JavaShuo
欄目
標籤
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
時間 2020-08-08
標籤
incentive
design
efficient
federated
learning
mobile
networks
contract
theory
approach
欄目
無線
简体版
原文
原文鏈接
論文解讀:html 背景 開銷和隱私兩大problems 移動網絡在計算和通訊兩方面有極大的開銷,若是沒有激勵機制,那麼感興趣的移動設備就不肯意加入聯邦學習任務web 以往的假設是認爲全部的移動設備都會在被邀請時無條件的參與聯邦學習,可是沒有精心設計的補償,自私自利的移動設備將不肯意參與網絡 兩個信息不對成 1.任務發佈者不知道用於模型訓練的資源量和數據大小 2.不知道移動設備的數據質量 致使:
>>阅读原文<<
相關文章
1.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
2.
An Efficient Deep Learning Approach for Collaborative Filtering Recommender System
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Geoffrey Hinton's Capsule Networks: A Novel Approach to Deep Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
8.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
9.
Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
10.
論文泛讀 A Novel Ensemble Learning-based Approach for Click Fraud Detection in Mobile Advertising [1/10]
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
Lua for 循環
-
Lua 教程
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
for...in
for..in
for.....in
networks
contract
efficient
incentive
federated
theory
approach
無線
jQuery Mobile 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
網絡層協議以及Ping
2.
ping檢測
3.
爲開發者總結了Android ADB 的常用十種命令
4.
3·15 CDN維權——看懂第三方性能測試指標
5.
基於 Dawn 進行多工程管理
6.
缺陷的分類
7.
阿里P8內部絕密分享:運維真經K8S+Docker指南」,越啃越香啊,寶貝
8.
本地iis部署mvc項目,問題與總結
9.
InterService+粘性服務+音樂播放器
10.
把tomcat服務器配置爲windows服務的方法
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
2.
An Efficient Deep Learning Approach for Collaborative Filtering Recommender System
3.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4.
Geoffrey Hinton's Capsule Networks: A Novel Approach to Deep Learning
5.
論文筆記——Federated learning framework for mobile edge computing networks
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
8.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
9.
Paper Reading:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
10.
論文泛讀 A Novel Ensemble Learning-based Approach for Click Fraud Detection in Mobile Advertising [1/10]
>>更多相關文章<<