JavaShuo
欄目
標籤
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension
時間 2020-12-30
原文
原文鏈接
來源 arXiv 2016.10.31 問題 當前的 RC 模型都是生成單個實體或者單個詞,不能夠根據問題動態生成答案。基於此,本文提出了 end2end 的 chunk 抽取神經網絡。 文章思路 Dynamic Chunk Reader 這一模型分成四步: encode layer 分別使用 bi-GRU 對 passage 和 question 進行編碼,這裏面的每個詞的表示是由 word e
>>阅读原文<<
相關文章
1.
論文筆記--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
2.
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension 論文閱讀筆記
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
Simple and Effective Multi-Paragraph Reading Comprehension
5.
MACHINE COMPREHENSION USING MATCH-LSTM AND ANSWER POINTER(MATCH-LSTM)
6.
Attention-over-Attention Neural Networks for Reading Comprehension 訊飛
7.
【論文翻譯+筆記】Neural Machine Reading Comprehension: Methods and Trends
8.
machine comprehension using match-lstm and answer pointer
9.
[ICLR2017] Machine Comprehension Using Match-LSTM and Answer Pointer
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 閱讀理解筆記
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
算法總結-股票買賣
相關標籤/搜索
ranking
answer
chunk
extraction
comprehension
reading
action.....and
between...and
react+and
for...of
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正確理解商業智能 BI 的價值所在
2.
解決梯度消失梯度爆炸強力推薦的一個算法-----LSTM(長短時記憶神經網絡)
3.
解決梯度消失梯度爆炸強力推薦的一個算法-----GRU(門控循環神經⽹絡)
4.
HDU4565
5.
算概率投硬幣
6.
密碼算法特性
7.
DICOMRT-DiTools:clouddicom源碼解析(1)
8.
HDU-6128
9.
計算機網絡知識點詳解(持續更新...)
10.
hods2896(AC自動機)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
2.
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension 論文閱讀筆記
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
Simple and Effective Multi-Paragraph Reading Comprehension
5.
MACHINE COMPREHENSION USING MATCH-LSTM AND ANSWER POINTER(MATCH-LSTM)
6.
Attention-over-Attention Neural Networks for Reading Comprehension 訊飛
7.
【論文翻譯+筆記】Neural Machine Reading Comprehension: Methods and Trends
8.
machine comprehension using match-lstm and answer pointer
9.
[ICLR2017] Machine Comprehension Using Match-LSTM and Answer Pointer
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 閱讀理解筆記
>>更多相關文章<<