JavaShuo
欄目
標籤
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension
時間 2020-12-30
原文
原文鏈接
來源 arXiv 2016.10.31 問題 當前的 RC 模型都是生成單個實體或者單個詞,不能夠根據問題動態生成答案。基於此,本文提出了 end2end 的 chunk 抽取神經網絡。 文章思路 Dynamic Chunk Reader 這一模型分成四步: encode layer 分別使用 bi-GRU 對 passage 和 question 進行編碼,這裏面的每個詞的表示是由 word e
>>阅读原文<<
相關文章
1.
論文筆記--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
2.
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension 論文閱讀筆記
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
Simple and Effective Multi-Paragraph Reading Comprehension
5.
MACHINE COMPREHENSION USING MATCH-LSTM AND ANSWER POINTER(MATCH-LSTM)
6.
Attention-over-Attention Neural Networks for Reading Comprehension 訊飛
7.
【論文翻譯+筆記】Neural Machine Reading Comprehension: Methods and Trends
8.
machine comprehension using match-lstm and answer pointer
9.
[ICLR2017] Machine Comprehension Using Match-LSTM and Answer Pointer
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 閱讀理解筆記
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(七)Conditional and Boolean
•
算法總結-股票買賣
相關標籤/搜索
ranking
answer
chunk
extraction
comprehension
reading
action.....and
between...and
react+and
for...of
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
排序-堆排序(heapSort)
2.
堆排序(heapSort)
3.
堆排序(HEAPSORT)
4.
SafetyNet簡要梳理
5.
中年轉行,擁抱互聯網(上)
6.
SourceInsight4.0鼠標單擊變量 整個文件一樣的關鍵字高亮
7.
遊戲建模和室內設計那個未來更有前景?
8.
cloudlet_使用Search Cloudlet爲您的搜索添加種類
9.
藍海創意雲丨這3條小建議讓編劇大大提高工作效率!
10.
flash動畫製作修改教程及超實用的小技巧分享,碩思閃客精靈
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文筆記--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
2.
Joint Training of Candidate Extraction and Answer Selection for Reading Comprehension 論文閱讀筆記
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
Simple and Effective Multi-Paragraph Reading Comprehension
5.
MACHINE COMPREHENSION USING MATCH-LSTM AND ANSWER POINTER(MATCH-LSTM)
6.
Attention-over-Attention Neural Networks for Reading Comprehension 訊飛
7.
【論文翻譯+筆記】Neural Machine Reading Comprehension: Methods and Trends
8.
machine comprehension using match-lstm and answer pointer
9.
[ICLR2017] Machine Comprehension Using Match-LSTM and Answer Pointer
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 閱讀理解筆記
>>更多相關文章<<