JavaShuo
欄目
標籤
【論文翻譯+筆記】Neural Machine Reading Comprehension: Methods and Trends
時間 2021-07-12
標籤
nlp
MRC
論文
綜述
简体版
原文
原文鏈接
1 Introduction 過去的MRC技術的特點:hand-crafted rules or features 缺點 Incapable of generalization performance may degrade due to large-scale datasets of myriad types of articles ignore long-range dependencies
>>阅读原文<<
相關文章
1.
【論文筆記】Improving Machine Reading Comprehension with General Reading Strategies(2019,NAACL)
2.
Attention-over-Attention Neural Networks for Reading Comprehension論文筆記
3.
論文筆記--Multi-Style Generative Reading Comprehension (Masque)
4.
【論文筆記03】ReasoNet: Learning to Stop Reading in Machine Comprehension
5.
論文筆記--Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification (V-Net)
6.
論文筆記--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
7.
論文閱讀|Cross-Lingual Machine Reading Comprehension
8.
論文《Adversarial Reading Networks For Machine Comprehension》
9.
機器閱讀理解綜述:2019—Neural Machine Reading Comprehension_Methods and Trends
10.
Read + Verify: Machine Reading Comprehension with Unanswerable Questions 論文閱讀筆記
更多相關文章...
•
Docker Machine
-
Docker教程
•
Eclipse 編譯項目
-
Eclipse 教程
•
Tomcat學習筆記(史上最全tomcat學習筆記)
•
RxJava操作符(七)Conditional and Boolean
相關標籤/搜索
論文翻譯
翻譯筆記
論文筆記
文章翻譯+筆記
methods
comprehension
machine
reading
trends
好文翻譯
MySQL教程
MyBatis教程
PHP教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
吳恩達深度學習--神經網絡的優化(1)
2.
FL Studio鋼琴卷軸之工具菜單的Riff命令
3.
RON
4.
中小企業適合引入OA辦公系統嗎?
5.
我的開源的MVC 的Unity 架構
6.
Ubuntu18 安裝 vscode
7.
MATLAB2018a安裝教程
8.
Vue之v-model原理
9.
【深度學習】深度學習之道:如何選擇深度學習算法架構
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【論文筆記】Improving Machine Reading Comprehension with General Reading Strategies(2019,NAACL)
2.
Attention-over-Attention Neural Networks for Reading Comprehension論文筆記
3.
論文筆記--Multi-Style Generative Reading Comprehension (Masque)
4.
【論文筆記03】ReasoNet: Learning to Stop Reading in Machine Comprehension
5.
論文筆記--Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification (V-Net)
6.
論文筆記--From Answer Extraction to Answer Generation for Machine Reading Comprehension (S-Net)
7.
論文閱讀|Cross-Lingual Machine Reading Comprehension
8.
論文《Adversarial Reading Networks For Machine Comprehension》
9.
機器閱讀理解綜述:2019—Neural Machine Reading Comprehension_Methods and Trends
10.
Read + Verify: Machine Reading Comprehension with Unanswerable Questions 論文閱讀筆記
>>更多相關文章<<