JavaShuo
欄目
標籤
Simple and Effective Multi-Paragraph Reading Comprehension
時間 2021-01-02
原文
原文鏈接
ACL 2018 Simple and Effective Multi-Paragraph Reading Comprehension github 背景 本文是華盛頓大學和艾倫研究所發表在ACL 2018 年上的工作,它主要關注的問題是閱讀理解(Reading Comprehension),並提出了一種處理整篇文檔作爲輸入的段落型QA模型。現有的模型雖然可以在短文檔QA問題上取得不錯的效果,但是
>>阅读原文<<
相關文章
1.
【論文筆記】Simple and Effective Multi-Paragraph Reading Comprehension
2.
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension閱讀筆記
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
【論文翻譯+筆記】Neural Machine Reading Comprehension: Methods and Trends
5.
Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond
6.
Gated Self-Matching Networks for Reading Comprehension and Question Answering論文筆記
7.
Gated Self-Matching Networks for Reading Comprehension and Question Answering論文閱讀筆記
8.
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension
9.
A Robust Adversarial Training Approach to Machine Reading Comprehension
10.
Alibaba AI Model Tops Humans in Reading Comprehension
更多相關文章...
•
XSL-FO simple-page-master 對象
-
XSL-FO 教程
•
W3C RDF and OWL 活動
-
W3C 教程
•
RxJava操作符(七)Conditional and Boolean
•
算法總結-股票買賣
相關標籤/搜索
comprehension
reading
simple
effective
action.....and
between...and
react+and
simple notes
simple+elementui
kerberos+simple
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Duang!超快Wi-Fi來襲
2.
機器學習-補充03 神經網絡之**函數(Activation Function)
3.
git上開源maven項目部署 多module maven項目(多module maven+redis+tomcat+mysql)後臺部署流程學習記錄
4.
ecliple-tomcat部署maven項目方式之一
5.
eclipse新導入的項目經常可以看到「XX cannot be resolved to a type」的報錯信息
6.
Spark RDD的依賴於DAG的工作原理
7.
VMware安裝CentOS-8教程詳解
8.
YDOOK:Java 項目 Spring 項目導入基本四大 jar 包 導入依賴,怎樣在 IDEA 的項目結構中導入 jar 包 導入依賴
9.
簡單方法使得putty(windows10上)可以免密登錄樹莓派
10.
idea怎麼用本地maven
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
【論文筆記】Simple and Effective Multi-Paragraph Reading Comprehension
2.
Simple and Effective Curriculum Pointer-Generator Networks for Reading Comprehension閱讀筆記
3.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
4.
【論文翻譯+筆記】Neural Machine Reading Comprehension: Methods and Trends
5.
Machine Reading Comprehension: The Role of Contextualized Language Models and Beyond
6.
Gated Self-Matching Networks for Reading Comprehension and Question Answering論文筆記
7.
Gated Self-Matching Networks for Reading Comprehension and Question Answering論文閱讀筆記
8.
End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension
9.
A Robust Adversarial Training Approach to Machine Reading Comprehension
10.
Alibaba AI Model Tops Humans in Reading Comprehension
>>更多相關文章<<