【Leetcode】62. 不一樣路徑

做者: 碼蹄疾
畢業於哈爾濱工業大學。 小米廣告第三代廣告引擎的設計者、開發者;
負責小米應用商店、日曆、開屏廣告業務線研發;
主導小米廣告引擎多個模塊重構;
關注推薦、搜索、廣告領域相關知識;

題目

一個機器人位於一個 m x n 網格的左上角 (起始點在下圖中標記爲「Start」 )。java

機器人每次只能向下或者向右移動一步。機器人試圖達到網格的右下角(在下圖中標記爲「Finish」)。python

問總共有多少條不一樣的路徑?編程

image.png

例如,上圖是一個7 x 3 的網格。有多少可能的路徑?dom

說明:m 和 n 的值均不超過 100。優化

示例 1:spa

輸入: m = 3, n = 2
輸出: 3
解釋:
從左上角開始,總共有 3 條路徑能夠到達右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:設計

輸入: m = 7, n = 3
輸出: 28

題解

這道題拿到題目我以爲你們的第一反應都是這應該是遞歸的題目,由於咱們能夠轉化爲子問題,可是這樣暴力確定會超時,就不用嘗試了。其實在該題遞歸的方法就是從上面到下面不斷的去嘗試,若是咱們能記住以前的結果,就對咱們下一步有幫助,因此想到了DP的方法。
格子中的數字表明當前的方法.code

  1. 初始狀態

1.png

  1. 當前這個狀態只和左邊和上邊的格子有關係.

2.png

  1. 依次求解

3.png

因而咱們能夠獲得狀態轉移方程:遞歸

ways[i][j] = ways[i-1][j] + ways[i][j-1];

java代碼

public class Solution {
    public int uniquePaths(int m, int n) {
        int[][] ways = new int[m][n];
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                if (i == 0 || j == 0) ways[i][j] = 1;
                else ways[i][j] = ways[i-1][j] + ways[i][j-1];
            }
        }
        return ways[m-1][n-1];
    }
}

優化

上面圖3咱們在求解的時候,咱們是一行一行求解的,實際上咱們只須要記錄遍歷到(i, j)這個位置的時候當前行有幾種路徑,若是遍歷到(i, m-1)的時候,替換掉這一行對應列的路徑便可,因而狀態轉移方程編程:
res[j] = res[j] + res[j-1]開發

class Solution {
    public int uniquePaths(int m, int n) {
        if (m <= 0 || n <= 0) {
            return 0;
        }
        int[] res = new int[n];
        res[0] = 1;
        for (int i = 0; i < m; i++) {
            for (int j = 1; j < n; j++) {
                res[j] += res[j - 1];
                System.out.println("i=" + i + "_" + "j=" + j + ":" + Arrays.toString(res));
            }
        }
        return res[n - 1];
    }
}

有的同窗可能仍是不理解,我在代碼裏面打印了一些信息方便理解:

i=0_j=1:[1, 1, 0, 0, 0, 0, 0]
i=0_j=2:[1, 1, 1, 0, 0, 0, 0]
i=0_j=3:[1, 1, 1, 1, 0, 0, 0]
i=0_j=4:[1, 1, 1, 1, 1, 0, 0]
i=0_j=5:[1, 1, 1, 1, 1, 1, 0]
i=0_j=6:[1, 1, 1, 1, 1, 1, 1] //只記錄到這一行的信息
i=1_j=1:[1, 2, 1, 1, 1, 1, 1]
i=1_j=2:[1, 2, 3, 1, 1, 1, 1]
i=1_j=3:[1, 2, 3, 4, 1, 1, 1]
i=1_j=4:[1, 2, 3, 4, 5, 1, 1]
i=1_j=5:[1, 2, 3, 4, 5, 6, 1]
i=1_j=6:[1, 2, 3, 4, 5, 6, 7] //只記錄到這一行的信息
i=2_j=1:[1, 3, 3, 4, 5, 6, 7]
i=2_j=2:[1, 3, 6, 4, 5, 6, 7]
i=2_j=3:[1, 3, 6, 10, 5, 6, 7]
i=2_j=4:[1, 3, 6, 10, 15, 6, 7]
i=2_j=5:[1, 3, 6, 10, 15, 21, 7]
i=2_j=6:[1, 3, 6, 10, 15, 21, 28] //只記錄到這一行的信息
i=3_j=1:[1, 4, 6, 10, 15, 21, 28]
i=3_j=2:[1, 4, 10, 10, 15, 21, 28]
i=3_j=3:[1, 4, 10, 20, 15, 21, 28]
i=3_j=4:[1, 4, 10, 20, 35, 21, 28]
i=3_j=5:[1, 4, 10, 20, 35, 56, 28]
i=3_j=6:[1, 4, 10, 20, 35, 56, 84] //只記錄到這一行的信息

Math

這個題其實能夠用排列組合的方式來作。這實際上是最開始想到的方法。
以模擬的[4, 7]的例子,每一條路徑:

  1. 向右的確定有6步;
  2. 向左的確定有3步;

問題即爲:c(9,3) = (9 8 7) / (1 2 3) = 84

組合數公式:c(m,n) = m! / (n! * (m - n)!)

java代碼

java直接套用公式會越界,下面結果我用long存儲:

1!=1
2!=2
3!=6
4!=24
5!=120
6!=720
7!=5040
8!=40320
9!=362880
10!=3628800
11!=39916800
12!=479001600
13!=6227020800
14!=87178291200
15!=1307674368000
16!=20922789888000
17!=355687428096000
18!=6402373705728000
19!=121645100408832000
20!=2432902008176640000
21!=-4249290049419214848
22!=-1250660718674968576
23!=8128291617894825984
24!=-7835185981329244160

須要稍微化簡一下,化簡的過程就是我求解c(9,3)的第二步驟。

class Solution {
    public int uniquePaths(int m, int n) {
        double dom = 1;
        double dedom = 1;
        int small = m < n ? m - 1 : n - 1;
        int big = m < n ? n - 1 : m - 1;
        for (int i = 1; i <= small; i++) {
            dedom *= i;
            dom *= small + big + 1 - i;
        }
        return (int) (dom / dedom);
    }
}

python代碼

python代碼就比較兇殘了,一行代碼搞定:

class Solution:
    def uniquePaths(self, m, n):
        return int(math.factorial(m + n - 2) / math.factorial(m -1) / math.factorial(n-1))

貼一下DP版本的代碼

class Solution:
    def uniquePaths(self, m, n):
        """
        :type m: int
        :type n: int
        :rtype: int
        """
        if m <= 0 or n <= 0:
            return 0
        res = [0 for _ in range(0, n)]
        res[0] = 1
        for i in range(0, m):
            for j in range(1, n):
                res[j] += res[j-1]
        return res[n-1]

熱門閱讀

Leetcode名企之路

相關文章
相關標籤/搜索