前面分享了使用mapreduce作wordcount單詞統計的實現與原理。本篇博主將繼續分享一個移動流量分析的經典案例,來幫助在實際工做中理解和使用hadoop平臺。java
1、需求apache
如下是一個移動流量的日誌,咱們須要根據日誌分析出每一個手機號對應的上行流量、下行流量、總流量。centos
1363157985066 13726230503 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 120.197.40.4 4 0 264 0 200 1363157991076 13926435656 20-10-7A-28-CC-0A:CMCC 120.196.100.99 2 4 132 1512 200 1363154400022 13926251106 5C-0E-8B-8B-B1-50:CMCC 120.197.40.4 4 0 240 0 200 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.196.100.99 iface.qiyi.com 視頻網站 15 12 1527 2106 200 1363157995074 84138413 5C-0E-8B-8C-E8-20:7DaysInn 120.197.40.4 122.72.52.12 20 16 4116 1432 200 1363157993055 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200 1363157995033 15920133257 5C-0E-8B-C7-BA-20:CMCC 120.197.40.4 sug.so.360.cn 信息安全 20 20 3156 2936 200 1363157983019 13719199419 68-A1-B7-03-07-B1:CMCC-EASY 120.196.100.82 4 0 240 0 200 1363157984041 13660577991 5C-0E-8B-92-5C-20:CMCC-EASY 120.197.40.4 s19.cnzz.com 站點統計 24 9 6960 690 200 1363157973098 15013685858 5C-0E-8B-C7-F7-90:CMCC 120.197.40.4 rank.ie.sogou.com 搜索引擎 28 27 3659 3538 200 1363157986029 15989002119 E8-99-C4-4E-93-E0:CMCC-EASY 120.196.100.99 www.umeng.com 站點統計 3 3 1938 180 200 1363157992093 13560439658 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 15 9 918 4938 200 1363157986041 13480253104 5C-0E-8B-C7-FC-80:CMCC-EASY 120.197.40.4 3 3 180 180 200 1363157984040 13602846565 5C-0E-8B-8B-B6-00:CMCC 120.197.40.4 2052.flash2-http.qq.com 綜合門戶 15 12 1938 2910 200 1363157995093 13922314466 00-FD-07-A2-EC-BA:CMCC 120.196.100.82 img.qfc.cn 12 12 3008 3720 200 1363157982040 13502468823 5C-0A-5B-6A-0B-D4:CMCC-EASY 120.196.100.99 y0.ifengimg.com 綜合門戶 57 102 7335 110349 200 1363157986072 18320173382 84-25-DB-4F-10-1A:CMCC-EASY 120.196.100.99 input.shouji.sogou.com 搜索引擎 21 18 9531 2412 200 1363157990043 13925057413 00-1F-64-E1-E6-9A:CMCC 120.196.100.55 t3.baidu.com 搜索引擎 69 63 11058 48243 200 1363157988072 13760778710 00-FD-07-A4-7B-08:CMCC 120.196.100.82 2 2 120 120 200 1363157985066 13726238888 00-FD-07-A4-72-B8:CMCC 120.196.100.82 i02.c.aliimg.com 24 27 2481 24681 200 1363157993055 13560436666 C4-17-FE-BA-DE-D9:CMCC 120.196.100.99 18 15 1116 954 200
2、實現安全
字段說明:上面日誌中,第二列爲手機號;倒數第二三分別是下行流量和上行流量服務器
hdfs dfs -mkdir -p /user/hadoop/flowcountapp
FlowBean(分析輸出結果bean)ide
package com.empire.hadoop.mr.flowcount; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; /** * 類 FlowBean.java的實現描述:流量bean實現,因爲mapreduce須要在計算中將結果序列化進行傳輸, * 因此須要實現writable接口;若是須要進行排序須要實現WritableComparable接口 * * @author arron 2018年11月24日 下午9:40:40 */ public class FlowBean implements Writable { private long upFlow; private long dFlow; private long sumFlow; //反序列化時,須要反射調用空參構造函數,因此要顯示定義一個 public FlowBean() { } public FlowBean(long upFlow, long dFlow) { this.upFlow = upFlow; this.dFlow = dFlow; this.sumFlow = upFlow + dFlow; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getdFlow() { return dFlow; } public void setdFlow(long dFlow) { this.dFlow = dFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } /** * 序列化方法 */ public void write(DataOutput out) throws IOException { out.writeLong(upFlow); out.writeLong(dFlow); out.writeLong(sumFlow); } /** * 反序列化方法 注意:反序列化的順序跟序列化的順序徹底一致 */ public void readFields(DataInput in) throws IOException { upFlow = in.readLong(); dFlow = in.readLong(); sumFlow = in.readLong(); } @Override public String toString() { return upFlow + "\t" + dFlow + "\t" + sumFlow; } }
mapreduce主程序函數
package com.empire.hadoop.mr.flowcount; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * 類 FlowCount.java的實現描述:移動日誌分析某個手機號對應的上行總流量、下行總流量、總流量等信息 * * @author arron 2018年11月24日 下午9:43:23 */ public class FlowCount { static class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //將一行內容轉成string String line = value.toString(); //切分字段 String[] fields = line.split("\t"); //取出手機號 String phoneNbr = fields[1]; //取出上行流量下行流量 long upFlow = Long.parseLong(fields[fields.length - 3]); long dFlow = Long.parseLong(fields[fields.length - 2]); context.write(new Text(phoneNbr), new FlowBean(upFlow, dFlow)); } } static class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> { //<183323,bean1><183323,bean2><183323,bean3><183323,bean4>....... @Override protected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException { long sum_upFlow = 0; long sum_dFlow = 0; //遍歷全部bean,將其中的上行流量,下行流量分別累加 for (FlowBean bean : values) { sum_upFlow += bean.getUpFlow(); sum_dFlow += bean.getdFlow(); } FlowBean resultBean = new FlowBean(sum_upFlow, sum_dFlow); context.write(key, resultBean); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); /* * conf.set("mapreduce.framework.name", "yarn"); * conf.set("yarn.resoucemanager.hostname", "mini1"); */ Job job = Job.getInstance(conf); /* job.setJar("/home/hadoop/wc.jar"); */ //指定本程序的jar包所在的本地路徑 job.setJarByClass(FlowCount.class); //指定本業務job要使用的mapper/Reducer業務類 job.setMapperClass(FlowCountMapper.class); job.setReducerClass(FlowCountReducer.class); //指定mapper輸出數據的kv類型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(FlowBean.class); //指定最終輸出的數據的kv類型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); //指定job的輸入原始文件所在目錄 FileInputFormat.setInputPaths(job, new Path(args[0])); //指定job的輸出結果所在目錄 FileOutputFormat.setOutputPath(job, new Path(args[1])); //將job中配置的相關參數,以及job所用的java類所在的jar包,提交給yarn去運行 /* job.submit(); */ boolean res = job.waitForCompletion(true); System.exit(res ? 0 : 1); } }
3、打包運行oop
打包按照上一篇博客wordcount的方式進行打包運行。運行效果以下:大數據
18/11/25 06:03:38 INFO client.RMProxy: Connecting to ResourceManager at centos-aaron-h1/192.168.29.144:8032 18/11/25 06:03:39 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 18/11/25 06:03:39 INFO input.FileInputFormat: Total input files to process : 5 18/11/25 06:03:39 INFO mapreduce.JobSubmitter: number of splits:5 18/11/25 06:03:40 INFO Configuration.deprecation: yarn.resourcemanager.system-metrics-publisher.enabled is deprecated. Instead, use yarn.system-metrics-publisher.enabled 18/11/25 06:03:40 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1543096217465_0001 18/11/25 06:03:41 INFO impl.YarnClientImpl: Submitted application application_1543096217465_0001 18/11/25 06:03:41 INFO mapreduce.Job: The url to track the job: http://centos-aaron-h1:8088/proxy/application_1543096217465_0001/ 18/11/25 06:03:41 INFO mapreduce.Job: Running job: job_1543096217465_0001 18/11/25 06:03:51 INFO mapreduce.Job: Job job_1543096217465_0001 running in uber mode : false 18/11/25 06:03:51 INFO mapreduce.Job: map 0% reduce 0% 18/11/25 06:04:00 INFO mapreduce.Job: map 20% reduce 0% 18/11/25 06:04:13 INFO mapreduce.Job: map 100% reduce 0% 18/11/25 06:04:14 INFO mapreduce.Job: map 100% reduce 100% 18/11/25 06:04:15 INFO mapreduce.Job: Job job_1543096217465_0001 completed successfully 18/11/25 06:04:15 INFO mapreduce.Job: Counters: 50 File System Counters FILE: Number of bytes read=4171 FILE: Number of bytes written=1193767 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=11574 HDFS: Number of bytes written=594 HDFS: Number of read operations=18 HDFS: Number of large read operations=0 HDFS: Number of write operations=2 Job Counters Killed map tasks=1 Launched map tasks=5 Launched reduce tasks=1 Data-local map tasks=5 Total time spent by all maps in occupied slots (ms)=79442 Total time spent by all reduces in occupied slots (ms)=11115 Total time spent by all map tasks (ms)=79442 Total time spent by all reduce tasks (ms)=11115 Total vcore-milliseconds taken by all map tasks=79442 Total vcore-milliseconds taken by all reduce tasks=11115 Total megabyte-milliseconds taken by all map tasks=81348608 Total megabyte-milliseconds taken by all reduce tasks=11381760 Map-Reduce Framework Map input records=110 Map output records=110 Map output bytes=3945 Map output materialized bytes=4195 Input split bytes=624 Combine input records=0 Combine output records=0 Reduce input groups=21 Reduce shuffle bytes=4195 Reduce input records=110 Reduce output records=21 Spilled Records=220 Shuffled Maps =5 Failed Shuffles=0 Merged Map outputs=5 GC time elapsed (ms)=1587 CPU time spent (ms)=4710 Physical memory (bytes) snapshot=878612480 Virtual memory (bytes) snapshot=5069615104 Total committed heap usage (bytes)=623616000 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=10950 File Output Format Counters Bytes Written=594
分析結果:
[hadoop@centos-aaron-h1 ~]$ hadoop fs -ls /user/hadoop/flowcountount Found 2 items -rw-r--r-- 2 hadoop supergroup 0 2018-11-25 06:04 /user/hadoop/flowcountount/_SUCCESS -rw-r--r-- 2 hadoop supergroup 594 2018-11-25 06:04 /user/hadoop/flowcountount/part-r-00000 [hadoop@centos-aaron-h1 ~]$ hadoop fs -cat /user/hadoop/flowcountount/part-r-00000 13480253104 900 900 1800 13502468823 36675 551745 588420 13560436666 5580 4770 10350 13560439658 10170 29460 39630 13602846565 9690 14550 24240 13660577991 34800 3450 38250 13719199419 1200 0 1200 13726230503 12405 123405 135810 13726238888 12405 123405 135810 13760778710 600 600 1200 13826544101 1320 0 1320 13922314466 15040 18600 33640 13925057413 55290 241215 296505 13926251106 1200 0 1200 13926435656 660 7560 8220 15013685858 18295 17690 35985 15920133257 15780 14680 30460 15989002119 9690 900 10590 18211575961 7635 10530 18165 18320173382 47655 12060 59715 84138413 20580 7160 27740
最後寄語,以上是博主本次文章的所有內容,若是你們以爲博主的文章還不錯,請點贊;若是您對博主其它服務器大數據技術或者博主本人感興趣,請關注博主博客,而且歡迎隨時跟博主溝通交流。