JavaShuo
欄目
標籤
AlignGAN: Learning to Align Cross-Domain Images with Conditional Generative Adversarial Networks
時間 2020-12-23
標籤
GAN
欄目
HTML
简体版
原文
原文鏈接
下載鏈接:https://arxiv.org/pdf/1707.01400.pdf 一 、什麼是對抗? 對抗樣本和對抗網絡 所謂對抗,樣本是指將實際樣本略加擾動而構造出的合成樣本,對該樣本,分類器非常容易將其類別判錯,這意味着光滑性假設(相似的樣本應該以很高的概率被判爲同一類別)某種程度上被推翻了。 有一篇論文應該是最早提出對抗樣本概念的。該論文指出,包括卷積神經網
>>阅读原文<<
相關文章
1.
FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
2.
【翻譯】Image-to-Image Translation with Conditional Adversarial Networks
3.
(Pixel2PixelGANs)Image-to-Image translation with conditional adversarial networks
4.
Conditional Generative Adversarial Networks(CGAN)筆記
5.
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
6.
FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
7.
DCGAN:Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
8.
Generative Adversarial Text to Image Synthesis
9.
Image-to-Image Translation with Conditional Adversarial Networks
10.
Image-to-Image Translation with Conditional Adversarial Networks筆記
更多相關文章...
•
Docker images 命令
-
Docker命令大全
•
XSL-FO conditional-page-master-reference 對象
-
XSL-FO 教程
•
RxJava操作符(七)Conditional and Boolean
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
相關標籤/搜索
networks
adversarial
generative
crossdomain
conditional
align
images
learning
icon&images
with+this
HTML
圖片處理
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
正確理解商業智能 BI 的價值所在
2.
解決梯度消失梯度爆炸強力推薦的一個算法-----LSTM(長短時記憶神經網絡)
3.
解決梯度消失梯度爆炸強力推薦的一個算法-----GRU(門控循環神經⽹絡)
4.
HDU4565
5.
算概率投硬幣
6.
密碼算法特性
7.
DICOMRT-DiTools:clouddicom源碼解析(1)
8.
HDU-6128
9.
計算機網絡知識點詳解(持續更新...)
10.
hods2896(AC自動機)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS
2.
【翻譯】Image-to-Image Translation with Conditional Adversarial Networks
3.
(Pixel2PixelGANs)Image-to-Image translation with conditional adversarial networks
4.
Conditional Generative Adversarial Networks(CGAN)筆記
5.
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
6.
FACE AGING WITH CONDITIONAL GENERATIVE ADVERSARIAL NETWORK
7.
DCGAN:Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
8.
Generative Adversarial Text to Image Synthesis
9.
Image-to-Image Translation with Conditional Adversarial Networks
10.
Image-to-Image Translation with Conditional Adversarial Networks筆記
>>更多相關文章<<