Handler消息處理機制在Android開發中起着舉足輕重的做用,咱們有必要好好理解下其原理,先前我寫的一篇文章,感受疏漏了好多東西,所以打算寫這篇文章,下面咱們先從一個簡單的例子出發java
假設咱們有這麼一個須要,請求網絡而後將圖片展現出來,咱們知道網絡請求是不容許在主線程執行的,而UI是不能在子線程(具體是不容許在非建立UI的原始線程)更新的,所以咱們須要在子線程請求網絡得到了數據之後再切換回主線程更新UI,這個例子中Handler就是起着切換線程的做用,下面的代碼演示了這個例子bash
class MainActivity : AppCompatActivity() {
private lateinit var mImageView: ImageView
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
mImageView = findViewById(R.id.iv)
loadImage()
}
private fun loadImage() {
Thread {
val url = URL("https://img-my.csdn.net/uploads/201309/01/1378037235_7476.jpg")
val conn = url.openConnection()
val bitmap = BitmapFactory.decodeStream(conn.inputStream)
runOnUiThread {
mImageView.setImageBitmap(bitmap)
}
}.start()
}
}
複製代碼
咦!,說好的Handler去哪了?這裏的runOnUIThread方法內部實現其實就是利用了Handler,咱們來看看它的源碼網絡
public final void runOnUiThread(Runnable action) {
if (Thread.currentThread() != mUiThread) {
mHandler.post(action);
} else {
action.run();
}
}
複製代碼
該方法首先判斷了當前線程是不是主線程,若是不是主線程就調用mHandler.post()
,若是當前線程就是主線程就直接運行,下面咱們來分析看看Handler的原理異步
要想分析Handler的原理,咱們先從Handler的建立過程開始分析async
Activity的這個mHandler是怎麼來的呢?原來mHandler是Activity的成員變量,在Activity實例建立的時候就建立了ide
final Handler mHandler = new Handler();
複製代碼
接着看看Handler的構造方法oop
public Handler() {
this(null, false);
}
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
// 表明發送的消息是不是異步的
mAsynchronous = async;
}
複製代碼
首先判斷了該Handler派生類是不是非靜態內部類,若是是的話就打印出日誌提示可能致使內存泄露,而後調用了Looper.myLooper
獲取到當前線程的Looper對象,若是當前線程沒有Looper就會拋出異常,最後將Looper中的MessageQueue對象賦值給mQueue,callback賦值給mCallback,aync賦值給mAsynchronous,咱們來看看Looper.myLooper
作了些什麼post
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
複製代碼
從ThreadLocal裏面去Looper,那麼是在哪裏把Looper設置到ThreadLocal裏面去的呢?其實Looper提供了prepare
方法來建立當前線程的Looper,咱們來看看代碼ui
public static void prepare() {
// 表示容許退出循環
prepare(true);
}
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
複製代碼
只有在當前線程拿不到Looper的時候纔會去建立Looper對象並將其設置到ThreadLocal中去,否則就拋出異常說一個線程只能擁有一個Looper,繼續看看Looper的構造方法this
// 這裏的quitAllowed是true
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
複製代碼
又建立了一個MessageQueue對象,繼續看看它的構造方法
// 這裏的quitAllowed是true
MessageQueue(boolean quitAllowed) {
mQuitAllowed = quitAllowed;
mPtr = nativeInit();
}
複製代碼
調用了一個Native方法就結束了,其實mPtr是NativeMessageQueue與MessageQueue之間的橋樑內部會調用epoll.create()
、epoll.ctl()
,暫時不看native層代碼
源碼看到這裏就會產生一個疑問,既然建立Handler的時候判斷了當前線程的Looper是否爲null,爲null就會拋出異常,那麼Activity的Handler是怎麼建立成功的呢?其實在Activity實例建立前主線程就已經有Looper對象了,這個得從ActivityThread開始提及。ActivityThread是一個應用程序的入口裏面有一個main方法,咱們來看看
// 忽略其它代碼
public static void main(String[] args) {
...
Looper.prepareMainLooper();
Looper.loop();
...
}
複製代碼
Looper.loop()
後面會講到先忽略,main
方法內部調用了Looper.prepareMainLooper()
這個方法跟上面講到的Looper.prepare()
有什麼異同點呢?咱們來看看它的源碼
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
複製代碼
prepare
方法前面已經分析過了可是主線程是不容許退出的,因此傳入了false,後面判斷了若是sMainLooper不爲空那麼就拋出異常,至此主線程的Looper建立成功這也就解釋了爲何Activity中能夠直接建立Handler,接着咱們分析那個post
方法幹了些什麼事情
Handler提供了不少方法用於發送消息,好比如下幾種
咱們繼續着看post
方法的實現
public final boolean post(Runnable r) {
return sendMessageDelayed(getPostMessage(r), 0);
}
複製代碼
其實post
方法內部也就是發送了一個消息
private static Message getPostMessage(Runnable r) {
// message內部維護了一個Message鏈表,以達到複用的目的,記得不要直接new
Message m = Message.obtain();
m.callback = r;
return m;
}
public final boolean sendMessageDelayed(Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
複製代碼
最終調用到了sendMessageAtTime,其實幾乎全部發送消息的方法最終都會調用到該方法,繼續看enqueueMessage
的實現
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
複製代碼
這裏將本Handler的實例賦值給了msg.target
,這個很重要之後會用到,而後判斷下固然Handler是不是異步的,是的話就將消息設置成異步,咱們這裏不是異步的,接着繼續看enqueueMessage
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
複製代碼
該方法首先判斷了msg.target
是否爲空,這個咱們剛纔看到已經設置了,而後判斷msg
是否正在被使用,而後再判斷消息隊列是否已經退出了,若是已經退出了就將msg
回收並拋出個異常,下面那個同步代碼塊其實處理的邏輯就是將msg
放入到消息隊列中去,插入過程分爲如下兩步,至於needWake
是用於判斷是否要喚醒處於nativePollOnce
而阻塞的Message.next
方法
p == null || when == 0 || when < p.when
其實也就是若是消息隊列的頭指針爲空,或者當前消息的執行時間爲0,或者當前消息的執行時間先與消息隊列隊首的執行時間,那麼將當前msg
當作頭指針msg.when
決定插入的位置如今已經將消息放到的消息隊列中,可是何時這個消息才能獲得執行呢?這就要看看前面跳過的ActivityThread的main
方法中的Looper.loop()
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
return;
}
final Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
if (logSlowDelivery) {
if (slowDeliveryDetected) {
if ((dispatchStart - msg.when) <= 10) {
Slog.w(TAG, "Drained");
slowDeliveryDetected = false;
}
} else {
if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
msg)) {
// Once we write a slow delivery log, suppress until the queue drains.
slowDeliveryDetected = true;
}
}
}
if (logSlowDispatch) {
showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
}
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycleUnchecked();
}
}
複製代碼
這個代碼有點長,主要流程以下
next
方法獲取Message,若是返回了null,標誌了MessageQueue已經退出了,因此Looper也要退出mLogging
用於打印日誌,咱們能夠經過setMessageLogging
進行設置,設置後每次收到消息和消息處理完畢都會有日誌咱們能夠根據這些日誌分析ANR是因爲處理哪一個消息超時形成的slowDeliveryThresholdMs
要長就會打印警告日誌,慢交付時間表示這個消息從消息隊列取出時間比其設置的when
超過slowDispatchThresholdMs
就會打印警告日誌msg.target.dispatchMessage
進行分發消息,其中msg.target
就是一個Handler實例,上文說到過的msg
loop
方法調用queue.next
取出消息,咱們來看看該方法的實現
Message next() {
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
if (mQuitting) {
dispose();
return null;
}
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
pendingIdleHandlerCount = 0;
nextPollTimeoutMillis = 0;
}
}
複製代碼
該方法主要流程以下
nativePollOnce
,阻塞等待下一個可執行消息,該方法離開阻塞target
是否爲空,若是不爲空表示是一個普通的消息,若是爲空則表示是一個同步屏障消息(在屏幕刷新的時候會發送),遍歷消息隊列找到第一個異步消息賦值給msg
msg
是否爲空,若是爲空那麼進行無超時的等待,直到被喚醒msg
是否到了執行時間,若是不到就執行阻塞等待msg.when - now
,若是已經到了就將該消息返回拿到了消息之後就調用了handler.dispatchMessage
咱們來看看其實現
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
複製代碼
首先判斷是否該Message是否設置了callBack,設置了就直接運行,而後判斷Handler是否設置了callBack,設置了就調用callback.handleMessage
若是返回false,繼續調用handleMessage
nativePollOnce
阻塞狀態的線程