很是經典的dp題,由於1至8的最大公約數是840,任何一個數的和中840的倍數都是能夠放在一塊兒算的,
因此我只須要統計840*8的值(每一個數字(1-8)的sum%840的總和),剩下都是840的倍數
dp[i][j] 表明討論了第i位而且每一個數字取餘爲j的狀況ios
#include <assert.h> #include <algorithm> #include <bitset> #include <climits> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <functional> #include <iomanip> #include <iostream> #include <list> #include <map> #include <queue> #include <set> #include <stack> #include <vector> #include <ctime> #include <time.h> using namespace std; const int N = 2e5 + 5; const int INF = 0x3f3f3f3f; typedef long long ll; ll a[10]; ll dp[10][8400]; int main() { ll w; while(~scanf("%lld", &w)) { for(int i = 0; i < 8; ++i) { scanf("%lld", &a[i]); } memset(dp, -1, sizeof(dp)); dp[0][0] = 0; for(int i = 0; i < 8; ++i) { for(int j = 0; j < 8400; ++j) { if(dp[i][j] == -1) continue; int edge = min(1ll * 840 / (i + 1), a[i]); for(int k = 0; k <= edge; ++k) { dp[i + 1][j + k * (i + 1)] = max( dp[i + 1][j + k * (i + 1)], dp[i][j] + (a[i] - k) / (840 / (i + 1))); } } } ll ans = -1; for(int i = 0; i < 8400; ++i) { if(dp[8][i] == -1 || i > w) continue; ans = max(ans, i + min( (w - i) / 840, dp[8][i]) * 840); } printf("%lld\n", ans); } return 0; }