PaddlePaddle動態圖實現VGG(眼底篩查爲例)

本案例參考課程:百度架構師手把手教深度學習的內容。 主要目的爲練習vgg動態圖的PaddlePaddle實現。git

本案例已經在AISTUDIO共享,連接爲:算法

https://aistudio.baidu.com/aistudio/projectdetail/244766網絡

數據集iChallenge-PM:架構

數據集圖片 iChallenge-PM中既有病理性近視患者的眼底圖片,也有非病理性近視患者的圖片,命名規則以下:app

病理性近視(PM):文件名以P開頭dom

非病理性近視(non-PM):ide

高度近似(high myopia):文件名以H開頭函數

正常眼睛(normal):文件名以N開頭學習

咱們將病理性患者的圖片做爲正樣本,標籤爲1; 非病理性患者的圖片做爲負樣本,標籤爲0。從數據集中選取兩張圖片,經過LeNet提取特徵,構建分類器,對正負樣本進行分類,並將圖片顯示出來。測試

算法:

VGG VGG是當前最流行的CNN模型之一,2014年由Simonyan和Zisserman提出,其命名來源於論文做者所在的實驗室Visual Geometry Group。AlexNet模型經過構造多層網絡,取得了較好的效果,可是並無給出深度神經網絡設計的方向。VGG經過使用一系列大小爲3x3的小尺寸卷積核和pooling層構造深度卷積神經網絡,並取得了較好的效果。VGG模型由於結構簡單、應用性極強而廣受研究者歡迎,尤爲是它的網絡結構設計方法,爲構建深度神經網絡提供了方向。

圖3 是VGG-16的網絡結構示意圖,有13層卷積和3層全鏈接層。VGG網絡的設計嚴格使用3×33\times 33×3的卷積層和池化層來提取特徵,並在網絡的最後面使用三層全鏈接層,將最後一層全鏈接層的輸出做爲分類的預測。 在VGG中每層卷積將使用ReLU做爲激活函數,在全鏈接層以後添加dropout來抑制過擬合。使用小的卷積核可以有效地減小參數的個數,使得訓練和測試變得更加有效。好比使用兩層3×33\times 33×3卷積層,能夠獲得感覺野爲5的特徵圖,而比使用5×55 \times 55×5的卷積層須要更少的參數。因爲卷積核比較小,能夠堆疊更多的卷積層,加深網絡的深度,這對於圖像分類任務來講是有利的。VGG模型的成功證實了增長網絡的深度,能夠更好的學習圖像中的特徵模式。

關鍵代碼:

import os

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from PIL import Image

DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'

# 文件名以N開頭的是正常眼底圖片,以P開頭的是病變眼底圖片

file1 = 'N0012.jpg'

file2 = 'P0095.jpg'

# 讀取圖片

img1 = Image.open(os.path.join(DATADIR, file1))

img1 = np.array(img1)

img2 = Image.open(os.path.join(DATADIR, file2))

img2 = np.array(img2)

# 畫出讀取的圖片

plt.figure(figsize=(16, 8))

f = plt.subplot(121)

f.set_title('Normal', fontsize=20)

plt.imshow(img1)

f = plt.subplot(122)

f.set_title('PM', fontsize=20)

plt.imshow(img2)

plt.show()


1240

In[3]

# 查看圖片形狀

img1.shape, img2.shape

((2056, 2124, 3), (2056, 2124, 3))

In[5]

#定義數據讀取器

import cv2

import random

import numpy as np

# 對讀入的圖像數據進行預處理

def transform_img(img):

    # 將圖片尺寸縮放道 224x224

    img = cv2.resize(img, (224, 224))

    # 讀入的圖像數據格式是[H, W, C]

    # 使用轉置操做將其變成[C, H, W]

    img = np.transpose(img, (2,0,1))

    img = img.astype('float32')

    # 將數據範圍調整到[-1.0, 1.0]之間

    img = img / 255.

    img = img * 2.0 - 1.0

    return img

# 定義訓練集數據讀取器

def data_loader(datadir, batch_size=10, mode = 'train'):

    # 將datadir目錄下的文件列出來,每條文件都要讀入

    filenames = os.listdir(datadir)

    def reader():

        if mode == 'train':

            # 訓練時隨機打亂數據順序

            random.shuffle(filenames)

        batch_imgs = []

        batch_labels = []

        for name in filenames:

            filepath = os.path.join(datadir, name)

            img = cv2.imread(filepath)

            img = transform_img(img)

            if name[0] == 'H' or name[0] == 'N':

                # H開頭的文件名錶示高度近似,N開頭的文件名錶示正常視力

                # 高度近視和正常視力的樣本,都不是病理性的,屬於負樣本,標籤爲0

                label = 0

            elif name[0] == 'P':

                # P開頭的是病理性近視,屬於正樣本,標籤爲1

                label = 1

            else:

                raise('Not excepted file name')

            # 每讀取一個樣本的數據,就將其放入數據列表中

            batch_imgs.append(img)

            batch_labels.append(label)

            if len(batch_imgs) == batch_size:

                # 當數據列表的長度等於batch_size的時候,

                # 把這些數據看成一個mini-batch,並做爲數據生成器的一個輸出

                imgs_array = np.array(batch_imgs).astype('float32')

                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)

                yield imgs_array, labels_array

                batch_imgs = []

                batch_labels = []

        if len(batch_imgs) > 0:

            # 剩餘樣本數目不足一個batch_size的數據,一塊兒打包成一個mini-batch

            imgs_array = np.array(batch_imgs).astype('float32')

            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)

            yield imgs_array, labels_array

    return reader

# 查看數據形狀

DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'

train_loader = data_loader(DATADIR,

                          batch_size=10, mode='train')

data_reader = train_loader()

data = next(data_reader)

data[0].shape, data[1].shape

((10, 3, 224, 224), (10, 1))

In[6]

!pip install xlrd

import pandas as pd

df=pd.read_excel('/home/aistudio/work/palm/PALM-Validation-GT/PM_Label_and_Fovea_Location.xlsx')

df.to_csv('/home/aistudio/work/palm/PALM-Validation-GT/labels.csv',index=False)

#訓練和評估代碼

import os

import random

import paddle

import paddle.fluid as fluid

import numpy as np

DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'

DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'

CSVFILE = '/home/aistudio/work/palm/PALM-Validation-GT/labels.csv'

# 定義訓練過程

def train(model):

    with fluid.dygraph.guard():

        print('start training ... ')

        model.train()

        epoch_num = 5

        # 定義優化器

        opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)

        # 定義數據讀取器,訓練數據讀取器和驗證數據讀取器

        train_loader = data_loader(DATADIR, batch_size=10, mode='train')

        valid_loader = valid_data_loader(DATADIR2, CSVFILE)

        for epoch in range(epoch_num):

            for batch_id, data in enumerate(train_loader()):

                x_data, y_data = data

                img = fluid.dygraph.to_variable(x_data)

                label = fluid.dygraph.to_variable(y_data)

                # 運行模型前向計算,獲得預測值

                logits = model(img)

                # 進行loss計算

                loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)

                avg_loss = fluid.layers.mean(loss)

                if batch_id % 10 == 0:

                    print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))

                # 反向傳播,更新權重,清除梯度

                avg_loss.backward()

                opt.minimize(avg_loss)

                model.clear_gradients()

            model.eval()

            accuracies = []

            losses = []

            for batch_id, data in enumerate(valid_loader()):

                x_data, y_data = data

                img = fluid.dygraph.to_variable(x_data)

                label = fluid.dygraph.to_variable(y_data)

                # 運行模型前向計算,獲得預測值

                logits = model(img)

                # 二分類,sigmoid計算後的結果以0.5爲閾值分兩個類別

                # 計算sigmoid後的預測機率,進行loss計算

                pred = fluid.layers.sigmoid(logits)

                loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)

                # 計算預測機率小於0.5的類別

                pred2 = pred * (-1.0) + 1.0

                # 獲得兩個類別的預測機率,並沿第一個維度級聯

                pred = fluid.layers.concat([pred2, pred], axis=1)

                acc = fluid.layers.accuracy(pred, fluid.layers.cast(label, dtype='int64'))

                accuracies.append(acc.numpy())

                losses.append(loss.numpy())

            print("[validation] accuracy/loss: {}/{}".format(np.mean(accuracies), np.mean(losses)))

            model.train()

        # save params of model

        fluid.save_dygraph(model.state_dict(), 'mnist')

        # save optimizer state

        fluid.save_dygraph(opt.state_dict(), 'mnist')

# 定義評估過程

def evaluation(model, params_file_path):

    with fluid.dygraph.guard():

        print('start evaluation .......')

        #加載模型參數

        model_state_dict, _ = fluid.load_dygraph(params_file_path)

        model.load_dict(model_state_dict)

        model.eval()

        eval_loader = load_data('eval')

        acc_set = []

        avg_loss_set = []

        for batch_id, data in enumerate(eval_loader()):

            x_data, y_data = data

            img = fluid.dygraph.to_variable(x_data)

            label = fluid.dygraph.to_variable(y_data)

            # 計算預測和精度

            prediction, acc = model(img, label)

            # 計算損失函數值

            loss = fluid.layers.cross_entropy(input=prediction, label=label)

            avg_loss = fluid.layers.mean(loss)

            acc_set.append(float(acc.numpy()))

            avg_loss_set.append(float(avg_loss.numpy()))

        # 求平均精度

        acc_val_mean = np.array(acc_set).mean()

        avg_loss_val_mean = np.array(avg_loss_set).mean()

        print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))

In[8]

# -*- coding:utf-8 -*-

# VGG模型代碼

import numpy as np

import paddle

import paddle.fluid as fluid

from paddle.fluid.layer_helper import LayerHelper

from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC

from paddle.fluid.dygraph.base import to_variable

# 定義vgg塊,包含多層卷積和1層2x2的最大池化層

class vgg_block(fluid.dygraph.Layer):

    def __init__(self, name_scope, num_convs, num_channels):

        """

        num_convs, 卷積層的數目

        num_channels, 卷積層的輸出通道數,在同一個Incepition塊內,卷積層輸出通道數是同樣的

        """

        super(vgg_block, self).__init__(name_scope)

        self.conv_list = []

        for i in range(num_convs):

            conv_layer = self.add_sublayer('conv_' + str(i), Conv2D(self.full_name(),

                                        num_filters=num_channels, filter_size=3, padding=1, act='relu'))

            self.conv_list.append(conv_layer)

        self.pool = Pool2D(self.full_name(), pool_stride=2, pool_size = 2, pool_type='max')

    def forward(self, x):

        for item in self.conv_list:

            x = item(x)

        return self.pool(x)

class VGG(fluid.dygraph.Layer):

    def __init__(self, name_scope, conv_arch=((2, 64),

                                (2, 128), (3, 256), (3, 512), (3, 512))):

        super(VGG, self).__init__(name_scope)

        self.vgg_blocks=[]

        iter_id = 0

        # 添加vgg_block

        # 這裏一共5個vgg_block,每一個block裏面的卷積層數目和輸出通道數由conv_arch指定

        for (num_convs, num_channels) in conv_arch:

            block = self.add_sublayer('block_' + str(iter_id),

                    vgg_block(self.full_name(), num_convs, num_channels))

            self.vgg_blocks.append(block)

            iter_id += 1

        self.fc1 = FC(self.full_name(),

                      size=4096,

                      act='relu')

        self.drop1_ratio = 0.5

        self.fc2= FC(self.full_name(),

                      size=4096,

                      act='relu')

        self.drop2_ratio = 0.5

        self.fc3 = FC(self.full_name(),

                      size=1,

                      )

    def forward(self, x):

        for item in self.vgg_blocks:

            x = item(x)

        x = fluid.layers.dropout(self.fc1(x), self.drop1_ratio)

        x = fluid.layers.dropout(self.fc2(x), self.drop2_ratio)

        x = self.fc3(x)

        return x

with fluid.dygraph.guard():

    model = VGG("VGG")

train(model)

start training ...

epoch: 0, batch_id: 0, loss is: [0.7242754]

epoch: 0, batch_id: 10, loss is: [0.6634571]

epoch: 0, batch_id: 20, loss is: [0.7898234]

epoch: 0, batch_id: 30, loss is: [0.60537547]

[validation] accuracy/loss: 0.9424999952316284/0.35623037815093994

epoch: 1, batch_id: 0, loss is: [0.31599292]

epoch: 1, batch_id: 10, loss is: [0.1198744]

epoch: 1, batch_id: 20, loss is: [0.46862125]

epoch: 1, batch_id: 30, loss is: [0.2300901]

[validation] accuracy/loss: 0.92249995470047/0.2342415601015091

epoch: 2, batch_id: 0, loss is: [0.22039299]

epoch: 2, batch_id: 10, loss is: [0.65977865]

epoch: 2, batch_id: 20, loss is: [0.37409317]

epoch: 2, batch_id: 30, loss is: [0.1841044]

[validation] accuracy/loss: 0.9325000643730164/0.22097690403461456

epoch: 3, batch_id: 0, loss is: [0.4992897]

epoch: 3, batch_id: 10, loss is: [0.31177607]

epoch: 3, batch_id: 20, loss is: [0.1721839]

epoch: 3, batch_id: 30, loss is: [0.38319916]

[validation] accuracy/loss: 0.9199999570846558/0.20679759979248047

epoch: 4, batch_id: 0, loss is: [0.20610766]

epoch: 4, batch_id: 10, loss is: [0.06688808]

epoch: 4, batch_id: 20, loss is: [0.3352648]

epoch: 4, batch_id: 30, loss is: [0.28062168]

[validation] accuracy/loss: 0.9149999618530273/0.21788272261619568

with fluid.dygraph.guard():

    model = VGG("VGG")

train(model)

相關文章
相關標籤/搜索