PaddlePaddle動態圖實現Resnet(眼底篩查爲例)

本案例參考課程:百度架構師手把手教深度學習的內容。 主要目的爲練習Resnet動態圖的PaddlePaddle實現。git

本案例已經在AISTUDIO共享,連接爲:web

https://aistudio.baidu.com/aistudio/projectdetail/244766網絡

數據集:架構

查看數據集圖片 iChallenge-PM中既有病理性近視患者的眼底圖片,也有非病理性近視患者的圖片,命名規則以下:app

病理性近視(PM):文件名以P開頭dom

非病理性近視(non-PM):ide

高度近似(high myopia):文件名以H開頭函數

正常眼睛(normal):文件名以N開頭學習

咱們將病理性患者的圖片做爲正樣本,標籤爲1; 非病理性患者的圖片做爲負樣本,標籤爲0。從數據集中選取兩張圖片,經過LeNet提取特徵,構建分類器,對正負樣本進行分類,並將圖片顯示出來。優化

ResNet

ResNet是2015年ImageNet比賽的冠軍,將識別錯誤率下降到了3.6%,這個結果甚至超出了正常人眼識別的精度。

經過前面幾個經典模型學習,咱們能夠發現隨着深度學習的不斷髮展,模型的層數愈來愈多,網絡結構也愈來愈複雜。那麼是否加深網絡結構,就必定會獲得更好的效果呢?從理論上來講,假設新增長的層都是恆等映射,只要原有的層學出跟原模型同樣的參數,那麼深模型結構就能達到原模型結構的效果。換句話說,原模型的解只是新模型的解的子空間,在新模型解的空間裏應該能找到比原模型解對應的子空間更好的結果。可是實踐代表,增長網絡的層數以後,訓練偏差每每不降反升。

Kaiming He等人提出了殘差網絡ResNet來解決上述問題,其基本思想如圖6所示。

圖6(a):表示增長網絡的時候,將x映射成y=F(x)y=F(x)y=F(x)輸出。

圖6(b):對圖6(a)做了改進,輸出y=F(x)+xy=F(x) + xy=F(x)+x。這時不是直接學習輸出特徵y的表示,而是學習y−xy-xy−x。

若是想學習出原模型的表示,只需將F(x)的參數所有設置爲0,則y=xy=xy=x是恆等映射。

F(x)=y−xF(x) = y - xF(x)=y−x也叫作殘差項,若是x→yx\rightarrow yx→y的映射接近恆等映射,圖6(b)中經過學習殘差項也比圖6(a)學習完整映射形式更加容易。


1240

圖6:殘差塊設計思想

圖6(b)的結構是殘差網絡的基礎,這種結構也叫作殘差塊(residual block)。輸入x經過跨層鏈接,能更快的向前傳播數據,或者向後傳播梯度。殘差塊的具體設計方案如7 所示,這種設計方案也成稱做瓶頸結構(BottleNeck)。


1240

圖7:殘差塊結構示意圖

下圖表示出了ResNet-50的結構,一共包含49層卷積和1層全鏈接,因此被稱爲ResNet-50。


1240

圖8:ResNet-50模型網絡結構示意圖

ResNet-50的具體實現以下代碼所示:

In[2]

import os

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from PIL import Image

DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'

# 文件名以N開頭的是正常眼底圖片,以P開頭的是病變眼底圖片

file1 = 'N0012.jpg'

file2 = 'P0095.jpg'

# 讀取圖片

img1 = Image.open(os.path.join(DATADIR, file1))

img1 = np.array(img1)

img2 = Image.open(os.path.join(DATADIR, file2))

img2 = np.array(img2)

# 畫出讀取的圖片

plt.figure(figsize=(16, 8))

f = plt.subplot(121)

f.set_title('Normal', fontsize=20)

plt.imshow(img1)

f = plt.subplot(122)

f.set_title('PM', fontsize=20)

plt.imshow(img2)

plt.show()


1240

In[4]

# 查看圖片形狀

img1.shape, img2.shape

((2056, 2124, 3), (2056, 2124, 3))

In[3]

#定義數據讀取器

import cv2

import random

import numpy as np

# 對讀入的圖像數據進行預處理

def transform_img(img):

    # 將圖片尺寸縮放道 224x224

    img = cv2.resize(img, (224, 224))

    # 讀入的圖像數據格式是[H, W, C]

    # 使用轉置操做將其變成[C, H, W]

    img = np.transpose(img, (2,0,1))

    img = img.astype('float32')

    # 將數據範圍調整到[-1.0, 1.0]之間

    img = img / 255.

    img = img * 2.0 - 1.0

    return img

# 定義訓練集數據讀取器

def data_loader(datadir, batch_size=10, mode = 'train'):

    # 將datadir目錄下的文件列出來,每條文件都要讀入

    filenames = os.listdir(datadir)

    def reader():

        if mode == 'train':

            # 訓練時隨機打亂數據順序

            random.shuffle(filenames)

        batch_imgs = []

        batch_labels = []

        for name in filenames:

            filepath = os.path.join(datadir, name)

            img = cv2.imread(filepath)

            img = transform_img(img)

            if name[0] == 'H' or name[0] == 'N':

                # H開頭的文件名錶示高度近似,N開頭的文件名錶示正常視力

                # 高度近視和正常視力的樣本,都不是病理性的,屬於負樣本,標籤爲0

                label = 0

            elif name[0] == 'P':

                # P開頭的是病理性近視,屬於正樣本,標籤爲1

                label = 1

            else:

                raise('Not excepted file name')

            # 每讀取一個樣本的數據,就將其放入數據列表中

            batch_imgs.append(img)

            batch_labels.append(label)

            if len(batch_imgs) == batch_size:

                # 當數據列表的長度等於batch_size的時候,

                # 把這些數據看成一個mini-batch,並做爲數據生成器的一個輸出

                imgs_array = np.array(batch_imgs).astype('float32')

                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)

                yield imgs_array, labels_array

                batch_imgs = []

                batch_labels = []

        if len(batch_imgs) > 0:

            # 剩餘樣本數目不足一個batch_size的數據,一塊兒打包成一個mini-batch

            imgs_array = np.array(batch_imgs).astype('float32')

            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)

            yield imgs_array, labels_array

    return reader

# 定義驗證集數據讀取器

def valid_data_loader(datadir, csvfile, batch_size=10, mode='valid'):

    # 訓練集讀取時經過文件名來肯定樣本標籤,驗證集則經過csvfile來讀取每一個圖片對應的標籤

    # 請查看解壓後的驗證集標籤數據,觀察csvfile文件裏面所包含的內容

    # csvfile文件所包含的內容格式以下,每一行表明一個樣本,

    # 其中第一列是圖片id,第二列是文件名,第三列是圖片標籤,

    # 第四列和第五列是Fovea的座標,與分類任務無關

    # ID,imgName,Label,Fovea_X,Fovea_Y

    # 1,V0001.jpg,0,1157.74,1019.87

    # 2,V0002.jpg,1,1285.82,1080.47

    # 打開包含驗證集標籤的csvfile,並讀入其中的內容

    filelists = open(csvfile).readlines()

    def reader():

        batch_imgs = []

        batch_labels = []

        for line in filelists[1:]:

            line = line.strip().split(',')

            name = line[1]

            label = int(line[2])

            # 根據圖片文件名加載圖片,並對圖像數據做預處理

            filepath = os.path.join(datadir, name)

            img = cv2.imread(filepath)

            img = transform_img(img)

            # 每讀取一個樣本的數據,就將其放入數據列表中

            batch_imgs.append(img)

            batch_labels.append(label)

            if len(batch_imgs) == batch_size:

                # 當數據列表的長度等於batch_size的時候,

                # 把這些數據看成一個mini-batch,並做爲數據生成器的一個輸出

                imgs_array = np.array(batch_imgs).astype('float32')

                labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)

                yield imgs_array, labels_array

                batch_imgs = []

                batch_labels = []

        if len(batch_imgs) > 0:

            # 剩餘樣本數目不足一個batch_size的數據,一塊兒打包成一個mini-batch

            imgs_array = np.array(batch_imgs).astype('float32')

            labels_array = np.array(batch_labels).astype('float32').reshape(-1, 1)

            yield imgs_array, labels_array

    return reader

In[5]

# 查看數據形狀

DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'

train_loader = data_loader(DATADIR,

                          batch_size=10, mode='train')

data_reader = train_loader()

data = next(data_reader)

data[0].shape, data[1].shape

((10, 3, 224, 224), (10, 1))

In[6]

!pip install xlrd

import pandas as pd

df=pd.read_excel('/home/aistudio/work/palm/PALM-Validation-GT/PM_Label_and_Fovea_Location.xlsx')

df.to_csv('/home/aistudio/work/palm/PALM-Validation-GT/labels.csv',index=False)

Looking in indexes: https://pypi.mirrors.ustc.edu.cn/simple/

Collecting xlrd

  Downloading https://mirrors.tuna.tsinghua.edu.cn/pypi/web/packages/b0/16/63576a1a001752e34bf8ea62e367997530dc553b689356b9879339cf45a4/xlrd-1.2.0-py2.py3-none-any.whl (103kB)

    |████████████████████████████████| 112kB 9.2MB/s eta 0:00:01

Installing collected packages: xlrd

Successfully installed xlrd-1.2.0

In[7]

#訓練和評估代碼

import os

import random

import paddle

import paddle.fluid as fluid

import numpy as np

DATADIR = '/home/aistudio/work/palm/PALM-Training400/PALM-Training400'

DATADIR2 = '/home/aistudio/work/palm/PALM-Validation400'

CSVFILE = '/home/aistudio/work/palm/PALM-Validation-GT/labels.csv'

# 定義訓練過程

def train(model):

    with fluid.dygraph.guard():

        print('start training ... ')

        model.train()

        epoch_num = 5

        # 定義優化器

        opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)

        # 定義數據讀取器,訓練數據讀取器和驗證數據讀取器

        train_loader = data_loader(DATADIR, batch_size=10, mode='train')

        valid_loader = valid_data_loader(DATADIR2, CSVFILE)

        for epoch in range(epoch_num):

            for batch_id, data in enumerate(train_loader()):

                x_data, y_data = data

                img = fluid.dygraph.to_variable(x_data)

                label = fluid.dygraph.to_variable(y_data)

                # 運行模型前向計算,獲得預測值

                logits = model(img)

                # 進行loss計算

                loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)

                avg_loss = fluid.layers.mean(loss)

                if batch_id % 10 == 0:

                    print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))

                # 反向傳播,更新權重,清除梯度

                avg_loss.backward()

                opt.minimize(avg_loss)

                model.clear_gradients()

            model.eval()

            accuracies = []

            losses = []

            for batch_id, data in enumerate(valid_loader()):

                x_data, y_data = data

                img = fluid.dygraph.to_variable(x_data)

                label = fluid.dygraph.to_variable(y_data)

                # 運行模型前向計算,獲得預測值

                logits = model(img)

                # 二分類,sigmoid計算後的結果以0.5爲閾值分兩個類別

                # 計算sigmoid後的預測機率,進行loss計算

                pred = fluid.layers.sigmoid(logits)

                loss = fluid.layers.sigmoid_cross_entropy_with_logits(logits, label)

                # 計算預測機率小於0.5的類別

                pred2 = pred * (-1.0) + 1.0

                # 獲得兩個類別的預測機率,並沿第一個維度級聯

                pred = fluid.layers.concat([pred2, pred], axis=1)

                acc = fluid.layers.accuracy(pred, fluid.layers.cast(label, dtype='int64'))

                accuracies.append(acc.numpy())

                losses.append(loss.numpy())

            print("[validation] accuracy/loss: {}/{}".format(np.mean(accuracies), np.mean(losses)))

            model.train()

        # save params of model

        fluid.save_dygraph(model.state_dict(), 'mnist')

        # save optimizer state

        fluid.save_dygraph(opt.state_dict(), 'mnist')

# 定義評估過程

def evaluation(model, params_file_path):

    with fluid.dygraph.guard():

        print('start evaluation .......')

        #加載模型參數

        model_state_dict, _ = fluid.load_dygraph(params_file_path)

        model.load_dict(model_state_dict)

        model.eval()

        eval_loader = load_data('eval')

        acc_set = []

        avg_loss_set = []

        for batch_id, data in enumerate(eval_loader()):

            x_data, y_data = data

            img = fluid.dygraph.to_variable(x_data)

            label = fluid.dygraph.to_variable(y_data)

            # 計算預測和精度

            prediction, acc = model(img, label)

            # 計算損失函數值

            loss = fluid.layers.cross_entropy(input=prediction, label=label)

            avg_loss = fluid.layers.mean(loss)

            acc_set.append(float(acc.numpy()))

            avg_loss_set.append(float(avg_loss.numpy()))

        # 求平均精度

        acc_val_mean = np.array(acc_set).mean()

        avg_loss_val_mean = np.array(avg_loss_set).mean()

        print('loss={}, acc={}'.format(avg_loss_val_mean, acc_val_mean))

ResNet-50的具體實現以下代碼所示:

In[8]

# -*- coding:utf-8 -*-

# ResNet模型代碼

import numpy as np

import paddle

import paddle.fluid as fluid

from paddle.fluid.layer_helper import LayerHelper

from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, FC

from paddle.fluid.dygraph.base import to_variable

# ResNet中使用了BatchNorm層,在卷積層的後面加上BatchNorm以提高數值穩定性

# 定義卷積批歸一化塊

class ConvBNLayer(fluid.dygraph.Layer):

    def __init__(self,

                name_scope,

                num_channels,

                num_filters,

                filter_size,

                stride=1,

                groups=1,

                act=None):

        """

        name_scope, 模塊的名字

        num_channels, 卷積層的輸入通道數

        num_filters, 卷積層的輸出通道數

        stride, 卷積層的步幅

        groups, 分組卷積的組數,默認groups=1不使用分組卷積

        act, 激活函數類型,默認act=None不使用激活函數

        """

        super(ConvBNLayer, self).__init__(name_scope)

        # 建立卷積層

        self._conv = Conv2D(

            self.full_name(),

            num_filters=num_filters,

            filter_size=filter_size,

            stride=stride,

            padding=(filter_size - 1) // 2,

            groups=groups,

            act=None,

            bias_attr=False)

        # 建立BatchNorm層

        self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)

    def forward(self, inputs):

        y = self._conv(inputs)

        y = self._batch_norm(y)

        return y

# 定義殘差塊

# 每一個殘差塊會對輸入圖片作三次卷積,而後跟輸入圖片進行短接

# 若是殘差塊中第三次卷積輸出特徵圖的形狀與輸入不一致,則對輸入圖片作1x1卷積,將其輸出形狀調整成一致

class BottleneckBlock(fluid.dygraph.Layer):

    def __init__(self,

                name_scope,

                num_channels,

                num_filters,

                stride,

                shortcut=True):

        super(BottleneckBlock, self).__init__(name_scope)

        # 建立第一個卷積層 1x1

        self.conv0 = ConvBNLayer(

            self.full_name(),

            num_channels=num_channels,

            num_filters=num_filters,

            filter_size=1,

            act='relu')

        # 建立第二個卷積層 3x3

        self.conv1 = ConvBNLayer(

            self.full_name(),

            num_channels=num_filters,

            num_filters=num_filters,

            filter_size=3,

            stride=stride,

            act='relu')

        # 建立第三個卷積 1x1,但輸出通道數乘以4

        self.conv2 = ConvBNLayer(

            self.full_name(),

            num_channels=num_filters,

            num_filters=num_filters * 4,

            filter_size=1,

            act=None)

        # 若是conv2的輸出跟此殘差塊的輸入數據形狀一致,則shortcut=True

        # 不然shortcut = False,添加1個1x1的卷積做用在輸入數據上,使其形狀變成跟conv2一致

        if not shortcut:

            self.short = ConvBNLayer(

                self.full_name(),

                num_channels=num_channels,

                num_filters=num_filters * 4,

                filter_size=1,

                stride=stride)

        self.shortcut = shortcut

        self._num_channels_out = num_filters * 4

    def forward(self, inputs):

        y = self.conv0(inputs)

        conv1 = self.conv1(y)

        conv2 = self.conv2(conv1)

        # 若是shortcut=True,直接將inputs跟conv2的輸出相加

        # 不然須要對inputs進行一次卷積,將形狀調整成跟conv2輸出一致

        if self.shortcut:

            short = inputs

        else:

            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)

        layer_helper = LayerHelper(self.full_name(), act='relu')

        return layer_helper.append_activation(y)

# 定義ResNet模型

class ResNet(fluid.dygraph.Layer):

    def __init__(self, name_scope, layers=50, class_dim=1):

        """

        name_scope,模塊名稱

        layers, 網絡層數,能夠是50, 101或者152

        class_dim,分類標籤的類別數

        """

        super(ResNet, self).__init__(name_scope)

        self.layers = layers

        supported_layers = [50, 101, 152]

        assert layers in supported_layers, \

            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        if layers == 50:

            #ResNet50包含多個模塊,其中第2到第5個模塊分別包含三、四、六、3個殘差塊

            depth = [3, 4, 6, 3]

        elif layers == 101:

            #ResNet101包含多個模塊,其中第2到第5個模塊分別包含三、四、2三、3個殘差塊

            depth = [3, 4, 23, 3]

        elif layers == 152:

            #ResNet50包含多個模塊,其中第2到第5個模塊分別包含三、八、3六、3個殘差塊

            depth = [3, 8, 36, 3]


        # 殘差塊中使用到的卷積的輸出通道數

        num_filters = [64, 128, 256, 512]

        # ResNet的第一個模塊,包含1個7x7卷積,後面跟着1個最大池化層

        self.conv = ConvBNLayer(

            self.full_name(),

            num_channels=3,

            num_filters=64,

            filter_size=7,

            stride=2,

            act='relu')

        self.pool2d_max = Pool2D(

            self.full_name(),

            pool_size=3,

            pool_stride=2,

            pool_padding=1,

            pool_type='max')

        # ResNet的第二到第五個模塊c二、c三、c四、c5

        self.bottleneck_block_list = []

        num_channels = 64

        for block in range(len(depth)):

            shortcut = False

            for i in range(depth[block]):

                bottleneck_block = self.add_sublayer(

                    'bb_%d_%d' % (block, i),

                    BottleneckBlock(

                        self.full_name(),

                        num_channels=num_channels,

                        num_filters=num_filters[block],

                        stride=2 if i == 0 and block != 0 else 1, # c三、c四、c5將會在第一個殘差塊使用stride=2;其他全部殘差塊stride=1

                        shortcut=shortcut))

                num_channels = bottleneck_block._num_channels_out

                self.bottleneck_block_list.append(bottleneck_block)

                shortcut = True

        # 在c5的輸出特徵圖上使用全局池化

        self.pool2d_avg = Pool2D(

            self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)

        # stdv用來做爲全鏈接層隨機初始化參數的方差

        import math

        stdv = 1.0 / math.sqrt(2048 * 1.0)

        # 建立全鏈接層,輸出大小爲類別數目

        self.out = FC(self.full_name(),

                      size=class_dim,

                      param_attr=fluid.param_attr.ParamAttr(

                          initializer=fluid.initializer.Uniform(-stdv, stdv)))


    def forward(self, inputs):

        y = self.conv(inputs)

        y = self.pool2d_max(y)

        for bottleneck_block in self.bottleneck_block_list:

            y = bottleneck_block(y)

        y = self.pool2d_avg(y)

        y = self.out(y)

        return y

In[9]

with fluid.dygraph.guard():

    model = ResNet("ResNet")

train(model)

start training ...

epoch: 0, batch_id: 0, loss is: [0.83079195]

epoch: 0, batch_id: 10, loss is: [0.5477183]

epoch: 0, batch_id: 20, loss is: [0.87052524]

epoch: 0, batch_id: 30, loss is: [1.0255078]

[validation] accuracy/loss: 0.7450000047683716/0.5235034823417664

epoch: 1, batch_id: 0, loss is: [0.41455013]

epoch: 1, batch_id: 10, loss is: [0.54812586]

epoch: 1, batch_id: 20, loss is: [0.17374663]

epoch: 1, batch_id: 30, loss is: [0.30293828]

[validation] accuracy/loss: 0.887499988079071/0.27671539783477783

epoch: 2, batch_id: 0, loss is: [0.38499922]

epoch: 2, batch_id: 10, loss is: [0.29150736]

epoch: 2, batch_id: 20, loss is: [0.3396409]

[validation] accuracy/loss: 0.9274999499320984/0.17061272263526917

epoch: 3, batch_id: 0, loss is: [0.06969612]

epoch: 3, batch_id: 10, loss is: [0.0861987]

epoch: 3, batch_id: 20, loss is: [0.05332329]

epoch: 3, batch_id: 30, loss is: [0.46470308]

[validation] accuracy/loss: 0.9375/0.20805077254772186

epoch: 4, batch_id: 0, loss is: [0.38617897]

epoch: 4, batch_id: 10, loss is: [0.16854036]

epoch: 4, batch_id: 20, loss is: [0.05454079]

epoch: 4, batch_id: 30, loss is: [0.32432565]

[validation] accuracy/loss: 0.8600000143051147/0.3488900661468506

相關文章
相關標籤/搜索