1.用python實現K均值算法python
import numpy as np x = np.random.randint(1,100,[20,1]) y = np.zeros(20) k = 3 x y
1(1) 選取數據空間中的K個對象做爲初始中心,每一個對象表明一個聚類中心;算法
def initcenter(x,k): return x[:k] def nearest(kc, i): d = (abs(kc - i)) w = np.where(d == np.min(d)) return w[0][0] kc = initcenter(x,k) nearest(kc,14)
1.(2) 對於樣本中的數據對象,根據它們與這些聚類中心的歐氏距離,按距離最近的準則將它們分到距離它們最近的聚類中心(最類似)所對應的類;數組
for i in range(x.shape[0]): y[i] = nearest(kc,x[i]) print(y)
def initcenter(x,k): return x[:k] def nearest(kc, i): d = (abs(kc - i)) w = np.where(d == np.min(d)) return w[0][0] def xclassify(x, y, kc): for i in range(x.shape[0]): y[i] = nearest(kc, x[i]) return y kc = initcenter(x,k) y = xclassify(x,y,kc) print(kc,y)
m = np.where(y == 0) m
np.mean(x[m])
kc[0]=24 kc
2. 鳶尾花花瓣長度數據作聚類並用散點圖顯示dom
import numpy as np from sklearn.datasets import load_iris iris = load_iris() x = iris.data[:,1] y = np.zeros(150) def initcenter(x, k): #初始聚類中心數組 return x[0:k].reshape(k) def nearest(kc, i): #數組中的值,與聚類中心最小距離所在類別的索引號 d = (abs(kc - i)) w = np.where(d == np.min(d)) return w[0][0] def kcmean(x, y, kc, k): #計算各聚類新均值 l = list(kc) flag = False for c in range(k): print(c) m = np.where(y ==c)
if m[0].shape != (0,): n = np.mean(x[m]) if l[c] != n: l[c] = n flag = True #聚類中心發生改變 return (np.array(1),flag)
def xclassify(x,y,kc): for i in range(x.shape[0]): #對數組的每一個值分類 y[i] = nearest(kc,x[i]) return y k = 3 kc = initcenter(x,k) falg = True print(x, y, kc, flag) while flag: y = xclassify(x, y, kc) xc, flag = kcmean(x, y, kc, k) print(y,kc)
運行結果:spa
import matplotlib.pyplot as plt plt.scatter(x, x, c=y, s=50, cmap='rainbow',marker='p',alpha=0.5); plt.show()
3.用sklearn.cluster.KMeans,鳶尾花花瓣長度數據作聚類並用散點圖顯示3d
import numpy as np from sklearn.cluster import KMeans from sklearn.datasets import load_iris import matplotlib.pyplot as plt iris_data = load_iris() X=iris_data.data # 花瓣長度 petal_length = X[:, 2:3] x= petal_length print(x) k_means = KMeans(n_clusters=3) est = k_means.fit(x) kc = est.cluster_centers_ y_kmeans = k_means.predict(x) plt.scatter(x,np.linspace(1,150,150),c=y_kmeans,marker='o',cmap='rainbow',linewidths=4) plt.show()
運行結果:rest
4.鳶尾花完整數據作聚類並用散點圖顯示code
from sklearn.cluster import KMeans import numpy as np from sklearn.datasets import load_iris import matplotlib.pyplot as plt data = load_iris() iris = data.data petal_len = iris print(petal_len) k_means = KMeans(n_clusters=3) #三個聚類中心 result = k_means.fit(petal_len) #Kmeans自動分類 kc = result.cluster_centers_ #自動分類後的聚類中心 y_means = k_means.predict(petal_len) #預測Y值 plt.scatter(petal_len[:,0],petal_len[:,2],c=y_means, marker='p',cmap='rainbow') plt.show()
運行結果:對象