聚類是一種無監督的學習算法,它將類似的數據概括到同一簇中。K-均值是由於它能夠按照k個不一樣的簇來分類,而且不一樣的簇中心採用簇中所含的均值計算而成。python
K-均值是把數據集按照k個簇分類,其中k是用戶給定的,其中每一個簇是經過質心來計算簇的中心點。算法
主要步驟:app
重複步驟2,直到任意一個點的簇分配結果不變
dom
from numpy import * import matplotlib import matplotlib.pyplot as plt def loadDataSet(fileName): #general function to parse tab -delimited floats dataMat = [] #assume last column is target value fr = open(fileName) for line in fr.readlines(): curLine = line.strip().split('\t') fltLine = map(float,curLine) #map all elements to float() dataMat.append(fltLine) return dataMat def distEclud(vecA, vecB): return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB) def randCent(dataSet, k): n = shape(dataSet)[1] centroids = mat(zeros((k,n)))#create centroid mat for j in range(n):#create random cluster centers, within bounds of each dimension minJ = min(dataSet[:,j]) rangeJ = float(max(dataSet[:,j]) - minJ) centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) return centroids def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2)))#create mat to assign data points #to a centroid, also holds SE of each point centroids = createCent(dataSet, k) clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m):#for each data point assign it to the closest centroid minDist = inf; minIndex = -1 for j in range(k): distJI = distMeas(centroids[j,:],dataSet[i,:]) if distJI < minDist: minDist = distJI; minIndex = j if clusterAssment[i,0] != minIndex: clusterChanged = True clusterAssment[i,:] = minIndex,minDist**2 for cent in range(k):#recalculate centroids ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean print ptsInClust print mean(ptsInClust, axis=0) return return centroids, clusterAssment def clusterClubs(numClust=5): datList = [] for line in open('places.txt').readlines(): lineArr = line.split('\t') datList.append([float(lineArr[4]), float(lineArr[3])]) datMat = mat(datList) myCentroids, clustAssing = biKmeans(datMat, numClust, distMeas=distSLC) fig = plt.figure() rect=[0.1,0.1,0.8,0.8] scatterMarkers=['s', 'o', '^', '8', 'p', \ 'd', 'v', 'h', '>', '<'] axprops = dict(xticks=[], yticks=[]) ax0=fig.add_axes(rect, label='ax0', **axprops) imgP = plt.imread('Portland.png') ax0.imshow(imgP) ax1=fig.add_axes(rect, label='ax1', frameon=False) for i in range(numClust): ptsInCurrCluster = datMat[nonzero(clustAssing[:,0].A==i)[0],:] markerStyle = scatterMarkers[i % len(scatterMarkers)] ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0], ptsInCurrCluster[:,1].flatten().A[0], marker=markerStyle, s=90) ax1.scatter(myCentroids[:,0].flatten().A[0], myCentroids[:,1].flatten().A[0], marker='+', s=300) plt.show()
設目標函數爲函數
$$J(c, \mu) = \sum _{i=1}^m (x_i - \mu_{c_{(i)}})^2$$學習
Kmeans算法是將J調整到最小,每次調整質心,J值也會減少,同時c和$\mu$也會收斂。因爲該函數是一個非凸函數,因此不能保證獲得全局最優,智能確保局部最優解。this
爲了克服K均值算法收斂於局部最小值的問題,提出了二分K均值算法。code
該算法首先將全部點做爲一個簇,而後將該簇一分爲2,以後選擇其中一個簇繼續進行劃分,劃分規則是按照最大化SSE(目標函數)的值。orm
主要步驟:blog
def biKMeans(dataSet, k, distMeans=distEclud): m, n = shape(dataSet) clusterAssment = mat(zeros((m, 2))) # init all data for index 0 centroid = mean(dataSet, axis=0).tolist() centList = [centroid] for i in range(m): clusterAssment[i, 1] = distMeans(mat(centroid), dataSet[i, :]) ** 2 while len(centList) < k: lowestSSE = inf for i in range(len(centList)): cluster = dataSet[nonzero(clusterAssment[:, 0].A == i)[0], :] # get the clust data of i centroidMat, splitCluster = kMeans(cluster, 2, distMeans) sseSplit = sum(splitCluster[:, 1]) #all sse sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:, 0].A != i)[0], 1]) # error sse #print sseSplit, sseNotSplit if sseSplit + sseNotSplit < lowestSSE: bestCentToSplit = i bestNewCent = centroidMat bestClust = splitCluster.copy() lowerSEE = sseSplit + sseNotSplit print bestClust bestClust[nonzero(bestClust[:, 0].A == 1)[0], 0] = len(centList) bestClust[nonzero(bestClust[:, 0].A == 0)[0], 0] = bestCentToSplit print bestClust print 'the bestCentToSplit is: ',bestCentToSplit print 'the len of bestClustAss is: ', len(bestClust) centList[bestCentToSplit] = bestNewCent[0, :].tolist()[0] centList.append(bestNewCent[1, :].tolist()[0]) print clusterAssment clusterAssment[nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClust print clusterAssment return mat(centList), clusterAssment