本文例子基於:5.0.4 Hash是Redis中一種比較常見的數據結構,其實現爲hashtable/ziplist,默認建立時爲ziplist,當到達必定量級時,redis會將ziplist轉化爲hashtablejava
首先讓咱們來看一下該如何在redis裏面使用Hash類型數組
//將hash表中key的域field的值設爲value
//若是key不存在,一個新的哈希表被建立並進行HSET操做
//若是域field已經存在於哈希表中,舊值將被覆蓋
hset key field value
複製代碼
//建立不存在的field
>hset user:1 id 1
(integer) 1
//覆蓋原先的field
>hset user:1 id 2
(integer) 0
>hget user:1 id
"2"
//獲取不存在的field
>hget user:1 not_exist
(nil)
----------------------------------
// hsetnx key field value
//當不存在該field 設置成功返回1 ,不然返回0
> hsetnx user:1 id 1
(integer) 1
> hsetnx user:1 id 1
(integer) 0
> hget user:1 id
"1"
----------------------------------
// hmset key field value [field value ....]
//批量設置多個鍵值對
>HMSET user:1 id 1 name "黑搜丶D" wechat "black-search"
OK
----------------------------------
//hget key field
//獲取hash表key中給定的field的值
>hget user:1 id
"1"
----------------------------------
// hmget key field[field...]
//按照咱們輸入的field的順序返回
>hmget user:1 name wechat id not_exist
1) "黑搜丶D"
2) "black-search"
3) "1"
4) (nil)
----------------------------------
// hdel key field 刪除返回被成功移除的域的數量
> hgetall user:1
1) "id"
2) "1"
3) "name"
4) "black-search"
> HDEL user:1 name
(integer) 1
> HDEL user:1 name
(integer) 0
----------------------------------
// HINCRBY key field increment
// 爲hash表某個整數類型的field增長increment ,返回增長increment以後的大小
> hset user:1 wechat "black-search"
(integer) 1
> HINCRBY user:1 wechat 2
(error) ERR hash value is not an integer
> HINCRBY user:1 id 21
(integer) 22
> hget user:1 id
"22"
複製代碼
至此,redis hash的用法先告一段落.數據結構
本文開頭的時候講默認建立爲ziplist,當達到必定的量級轉化爲hashtable,那麼具體是在何時纔會轉化成hashtable呢?app
# Hashes are encoded using a memory efficient data structure when they have a
# small number of entries, and the biggest entry does not exceed a given
# threshold. These thresholds can be configured using the following directives.
hash-max-ziplist-entries 512
hash-max-ziplist-value 64
複製代碼
從上文咱們能夠知道,只有當咱們知足如下兩個條件會將ziplist轉化爲hashtable結構dom
// 這裏測試當鍵值對小於等於512時,hash的類型
@RequestMapping("/")
public void test(){
List<Long> list = redisTemplate.executePipelined(new RedisCallback<Long>() {
@Override
public Long doInRedis(RedisConnection redisConnection) throws DataAccessException {
redisConnection.openPipeline();
for (int i=0;i<512;i++){
redisConnection.hSet("key".getBytes(),("field"+i).getBytes(),"value".getBytes());
}
return null;
}
});
System.out.println("結束");
}
//咱們發現這裏hash的類型就是ziplist
> debug object key
Value at:0xbc6f80 refcount:1 encoding:ziplist serializedlength:2603 lru:14344435 lru_seconds_idle:17
//讓咱們調大一下循環的次數,改成513,咱們發現
> debug object key
Value at:0xbc6f80 refcount:1 encoding:hashtable serializedlength:7587 lru:14344656 lru_seconds_idle:4
複製代碼
//首先咱們來看一下dict的結構
typedef struct dict {
dictType *type;
void *privdata;
dictht ht[2];
long rehashidx; /* rehashing not in progress if rehashidx == -1 */
unsigned long iterators; /* number of iterators currently running */
} dict;
typedef struct dictType {
uint64_t (*hashFunction)(const void *key);
void *(*keyDup)(void *privdata, const void *key);
void *(*valDup)(void *privdata, const void *obj);
int (*keyCompare)(void *privdata, const void *key1, const void *key2);
void (*keyDestructor)(void *privdata, void *key);
void (*valDestructor)(void *privdata, void *obj);
} dictType;
/* This is our hash table structure. Every dictionary has two of this as we * implement incremental rehashing, for the old to the new table. */
typedef struct dictht {
dictEntry **table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
typedef struct dictEntry {
void *key;
union {
void *val;
uint64_t u64;
int64_t s64;
double d;
} v;
struct dictEntry *next;
} dictEntry;
複製代碼
從以上咱們能夠知道,dict裏面包含了兩個dictht(ps:hashtable),一般狀況下只有一個dictht有值.可是當dict擴容/縮容的時候,須要分配新的dictht,而後漸進式搬遷,當遷移結束以後,舊的dictht被刪除,只保留新的dictht dict如何解決hash衝突呢?其實原理跟Java的HashMap是同樣的,採用數組+鏈表的方式去解決ide
咱們知道,redis是單進程的,若是要將一個大的字典擴容是會比較耗時的,那麼有可能就會將其餘請求掛起。因此redis採用漸進式rehash來完成這一項艱鉅任務~oop
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing) {
long index;
dictEntry *entry;
dictht *ht;
//這裏每次都會進行搬遷~
if (dictIsRehashing(d)) _dictRehashStep(d);
/* Get the index of the new element, or -1 if * the element already exists. */
if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
return NULL;
/* Allocate the memory and store the new entry. * Insert the element in top, with the assumption that in a database * system it is more likely that recently added entries are accessed * more frequently. */
//當字典處於搬遷中,將新添加的元素掛到新的數組下面
ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
entry = zmalloc(sizeof(*entry));
entry->next = ht->table[index];
ht->table[index] = entry;
ht->used++;
/* Set the hash entry fields. */
dictSetKey(d, entry, key);
return entry;
}
複製代碼
這樣,在客戶端每次請求(hset/hdel等)都會去判斷是否須要搬遷,那麼當客戶端不請求咱們的時候,有可能沒有完整的搬遷?no no no redis會在定時任務裏面掃描處於rehash的dict,而後完成剩餘的搬遷~代碼以下測試
/* This function handles 'background' operations we are required to do * incrementally in Redis databases, such as active key expiring, resizing, * rehashing. */
void databasesCron(void) {
/* Expire keys by random sampling. Not required for slaves * as master will synthesize DELs for us. */
if (server.active_expire_enabled) {
if (server.masterhost == NULL) {
activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
} else {
expireSlaveKeys();
}
}
/* Defrag keys gradually. */
if (server.active_defrag_enabled)
activeDefragCycle();
/* Perform hash tables rehashing if needed, but only if there are no * other processes saving the DB on disk. Otherwise rehashing is bad * as will cause a lot of copy-on-write of memory pages. */
if (server.rdb_child_pid == -1 && server.aof_child_pid == -1) {
/* We use global counters so if we stop the computation at a given * DB we'll be able to start from the successive in the next * cron loop iteration. */
static unsigned int resize_db = 0;
static unsigned int rehash_db = 0;
int dbs_per_call = CRON_DBS_PER_CALL;
int j;
/* Don't test more DBs than we have. */
if (dbs_per_call > server.dbnum) dbs_per_call = server.dbnum;
/* Resize */
for (j = 0; j < dbs_per_call; j++) {
tryResizeHashTables(resize_db % server.dbnum);
resize_db++;
}
/* Rehash */
//重點在這裏rehash
if (server.activerehashing) {
for (j = 0; j < dbs_per_call; j++) {
int work_done = incrementallyRehash(rehash_db);
if (work_done) {
/* If the function did some work, stop here, we'll do * more at the next cron loop. */
break;
} else {
/* If this db didn't need rehash, we'll try the next one. */
rehash_db++;
rehash_db %= server.dbnum;
}
}
}
}
}
複製代碼
儲存業務數據,咱們發現其實hset的用法很簡單,回顧上一講最後的應用場景ui
//上一講使用string
>set user:1 '{"id":1,"name":"黑搜丶D","wechat":"black-search"}'
//讓咱們使用hash來實現類似的作法
> HMSET user:1 id 1 name "黑搜丶D" wechat "black-search"
OK
//獲取key的某個field的值
>hget user:1 wechat
"black-search"
//獲取到key的全部 field:value組合
> HGETALL user:1
1) "id"
2) "1"
3) "name"
4) "\xe9\xbb\x91\xe6\x90\x9c\xe4\xb8\xb6D"
5) "wechat"
6) "black-search"
複製代碼
相對於string的用法,咱們使用hash get某個field或者set某個field會省不少帶寬~