JavaShuo
欄目
標籤
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
時間 2020-12-29
標籤
機器學習
深度學習
欄目
無線
简体版
原文
原文鏈接
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatics閱讀筆記 文獻背景及解決問題 車聯網中的聯邦學習 具體方案 總結與思考 文獻背景及解決問題 由於無線網絡帶寬和計算資源的限制,車輛很難使用大量數據來進行提高服務質量的機器學習,比如自動駕駛和交通預測
>>阅读原文<<
相關文章
1.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
2.
論文筆記——Federated learning framework for mobile edge computing networks
3.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
4.
Differentially Private Federated Learning: A Client Level Perspective
5.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Deployment Characteristics of "The Edge" in Mobile Edge Computing
8.
【論文閱讀】Edge Computing Architecture for Mobile Crowdsensing
9.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
10.
Edge Computing
更多相關文章...
•
Swift for-in 循環
-
Swift 教程
•
Lua for 循環
-
Lua 教程
•
Java Agent入門實戰(三)-JVM Attach原理與使用
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
相關標籤/搜索
for...in
for..in
for.....in
computing
asynchronous
urban
differentially
federated
edge
private
無線
jQuery Mobile 教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
shell編譯問題
2.
mipsel 編譯問題
3.
添加xml
4.
直方圖均衡化
5.
FL Studio鋼琴卷軸之畫筆工具
6.
中小企業爲什麼要用CRM系統
7.
Github | MelGAN 超快音頻合成源碼開源
8.
VUE生產環境打包build
9.
RVAS(rare variant association study)知識
10.
不看後悔系列!DTS 控制檯入門一本通(附網盤鏈接)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Differentially Private Asynchronous Federated Learning for Mobile Edge Computing in Urban Informatic
2.
論文筆記——Federated learning framework for mobile edge computing networks
3.
Federated Learning in Mobile Edge Networks: AComprehensive Survey(翻譯)
4.
Differentially Private Federated Learning: A Client Level Perspective
5.
論文筆記——Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
6.
Client Selection for Federated Learning with Heterogeneous Resources in Mobile Edge
7.
Deployment Characteristics of "The Edge" in Mobile Edge Computing
8.
【論文閱讀】Edge Computing Architecture for Mobile Crowdsensing
9.
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
10.
Edge Computing
>>更多相關文章<<