JavaShuo
欄目
標籤
論文解讀《Boosting Adversarial Attacks with Momentum》
時間 2021-01-06
標籤
FGSM
I-FGSM
MI-FGSM
欄目
C&C++
简体版
原文
原文鏈接
摘要 我們提出了一種廣泛的基於動量的迭代算法來增強對抗攻擊。通過將動量項集成到迭代過程中,我們的方法可以在迭代過程中穩定更新方向並避免糟糕的局部最大值 1.FGSM 我們先來了解一下迭代的FGSM算法,它通過以下公式來產生擾動 x ∗ x_* x∗ x ∗ = x + ϵ ∗ s i g n ( ∇ x J ( x ∗ , y ) ) , ( 1 ) x_*=x+{\epsilon}*sign(
>>阅读原文<<
相關文章
1.
[paper]Boosting Adversarial Attacks with Momentum
2.
【遷移攻擊論文筆記】動量邏輯集成!MI-FGSM!Boosting Adversarial Attacks with Momentum
3.
論文閱讀 Decision-based Black-box Adversarial Attacks
4.
[論文解讀]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
5.
Boosting Adversarial Training with Hypersphere Embedding
6.
Adversarial Network Embedding論文解讀
7.
MIXUP INFERENCE: BETTER EXPLOITING MIXUP TO DEFEND ADVERSARIAL ATTACKS 論文閱讀
8.
對抗樣本(論文解讀二): Transferable Adversarial Attacks for Image and Video Object Detection
9.
對抗樣本(論文解讀四): Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
10.
對抗樣本(論文解讀七):On Physical Adversarial Patches for Object Detection
更多相關文章...
•
C# 文本文件的讀寫
-
C#教程
•
*.hbm.xml映射文件詳解
-
Hibernate教程
•
JDK13 GA發佈:5大特性解讀
•
Scala 中文亂碼解決
相關標籤/搜索
論文解讀
adversarial
attacks
momentum
boosting
論文閱讀
CV論文閱讀
論文
解讀
with+this
C&C++
Thymeleaf 教程
Spring教程
MyBatis教程
文件系統
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
[最佳實踐]瞭解 Eolinker 如何助力遠程辦公
2.
katalon studio 安裝教程
3.
精通hibernate(harness hibernate oreilly)中的一個」錯誤「
4.
ECharts立體圓柱型
5.
零拷貝總結
6.
6 傳輸層
7.
Github協作圖想
8.
Cannot load 32-bit SWT libraries on 64-bit JVM
9.
IntelliJ IDEA 找其歷史版本
10.
Unity3D(二)遊戲對象及組件
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
[paper]Boosting Adversarial Attacks with Momentum
2.
【遷移攻擊論文筆記】動量邏輯集成!MI-FGSM!Boosting Adversarial Attacks with Momentum
3.
論文閱讀 Decision-based Black-box Adversarial Attacks
4.
[論文解讀]Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
5.
Boosting Adversarial Training with Hypersphere Embedding
6.
Adversarial Network Embedding論文解讀
7.
MIXUP INFERENCE: BETTER EXPLOITING MIXUP TO DEFEND ADVERSARIAL ATTACKS 論文閱讀
8.
對抗樣本(論文解讀二): Transferable Adversarial Attacks for Image and Video Object Detection
9.
對抗樣本(論文解讀四): Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
10.
對抗樣本(論文解讀七):On Physical Adversarial Patches for Object Detection
>>更多相關文章<<