JavaShuo
欄目
標籤
[paper]Boosting Adversarial Attacks with Momentum
時間 2020-12-25
標籤
AEs
機器學習
深度學習
欄目
C&C++
简体版
原文
原文鏈接
本文提出一個基於動量(Momentum)的迭代算法,該方法通過梯度以迭代的方式對輸入進行擾動以最大化損失函數,並且該方法還會在迭代過程中沿損失函數的梯度方向累加速度矢量,目的是穩定更新方向並避免糟糕的局部最大值。從而產生更好的可遷移(transferable)的對抗樣本,解決了對抗樣本生成算法對於黑盒模型的低成功率問題。 文中提到: 對抗樣本遷移性的現象是由於不同的機器學習模型在數據點周圍學習到相
>>阅读原文<<
相關文章
1.
論文解讀《Boosting Adversarial Attacks with Momentum》
2.
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
3.
[advGAN]Generating Adversarial Examples With Adversarial Networks
4.
【遷移攻擊論文筆記】動量邏輯集成!MI-FGSM!Boosting Adversarial Attacks with Momentum
5.
ENHANCING TRANSFORMATION-BASED DEFENSES AGAINST ADVERSARIAL ATTACKS WITH A DISTRIBUTION CLASSIFIER
6.
Generating Adversarial Examples with Adversarial Networks
7.
論文閱讀 Decision-based Black-box Adversarial Attacks
8.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
9.
DoS Attacks Prevention with TCP Intercept
10.
Improved Baselines with Momentum Contrastive Learning
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
PHP rtrim() 函數
-
PHP參考手冊
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
算法總結-股票買賣
相關標籤/搜索
adversarial
attacks
momentum
with+this
with...connect
with...as
by...with
C&C++
系統安全
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
論文解讀《Boosting Adversarial Attacks with Momentum》
2.
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
3.
[advGAN]Generating Adversarial Examples With Adversarial Networks
4.
【遷移攻擊論文筆記】動量邏輯集成!MI-FGSM!Boosting Adversarial Attacks with Momentum
5.
ENHANCING TRANSFORMATION-BASED DEFENSES AGAINST ADVERSARIAL ATTACKS WITH A DISTRIBUTION CLASSIFIER
6.
Generating Adversarial Examples with Adversarial Networks
7.
論文閱讀 Decision-based Black-box Adversarial Attacks
8.
PGD:Towards Deep Learning Models Resistant to Adversarial Attacks
9.
DoS Attacks Prevention with TCP Intercept
10.
Improved Baselines with Momentum Contrastive Learning
>>更多相關文章<<