hugging face-基於pytorch-bert的中文文本分類

一、安裝hugging face的transformershtml

pip install transformersgit

二、下載相關文件json

字表:app

wget http://52.216.242.246/models.huggingface.co/bert/bert-base-uncased-vocab.txt框架

配置文件:dom

wget http://52.216.242.246/models.huggingface.co/bert/bert-base-uncased-config.json函數

模型文件:學習

wget http://52.216.242.246/models.huggingface.co/bert/bert-base-uncased-pytorch_model.binui

三、數據集spa

simplifyweibo_4_moods數據集:

數據集下載地址:

36 萬多條,帶情感標註,包含 4 種情感,其中喜悅約 20 萬條,憤怒、厭惡、低落各約 5 萬條

0:喜悅 1:憤怒 2:厭惡 3:低落

四、完整代碼

目錄結構:谷歌colab中

import os
import pprint
import numpy as np
import pandas as pd
import random

from transformers import BertTokenizer,BertConfig,BertForSequenceClassification,AdamW,AutoTokenizer,AutoModel
from transformers import get_linear_schedule_with_warmup
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
import torch
from torch.utils.data import TensorDataset, DataLoader

class MyBertModel:
  def __init__(self,
        train,
        vocab_path,
        config_path,
        pretrain_Model_path,
        saveModel_path,
        learning_rate,
        n_class,epochs,
        batch_size,
        val_batch_size,
        max_len,
        gpu=True):
    self.n_class = n_class    #類別數
    self.max_len = max_len    #句子最大長度
    self.lr = learning_rate    #學習率
    self.epochs = epochs
    
    self.tokenizer = BertTokenizer.from_pretrained(vocab_path)    #加載分詞模型
    text_list, labels = self.load_data(train)    #加載訓練數據集
    train_x, val_x, train_y, val_y = self.split_train_val(text_list, labels)
    self.train = self.process_data(train_x, train_y)
    self.validation = self.process_data(val_x, val_y)
    self.batch_size = batch_size    #訓練集的batch_size
    self.val_batch_size = val_batch_size
        
    self.saveModel_path = saveModel_path    #模型存儲位置
    self.gpu = gpu    #是否使用gpu

    config = BertConfig.from_json_file(config_path)    #加載bert模型配置信息
    config.num_labels = n_class    #設置分類模型的輸出個數
    self.model = BertForSequenceClassification.from_pretrained(pretrain_Model_path,config=config)    #加載bert分類模型

    if self.gpu:
      seed = 42
      random.seed(seed)
      np.random.seed(seed)
      torch.manual_seed(seed)
      torch.cuda.manual_seed_all(seed)
      torch.backends.cudnn.deterministic = True
      self.device = torch.device('cuda')
    else:
      self.device = 'cpu'


  def encode_fn(self,text_list):
  #將text_list embedding成bert模型可用的輸入形式
  #text_list:['我愛你','貓不是狗']
    tokenizer = self.tokenizer(
        text_list,
        padding = True,
        truncation = True,
        max_length = self.max_len,
        return_tensors='pt'  # 返回的類型爲pytorch tensor
    )
    input_ids = tokenizer['input_ids']
    token_type_ids = tokenizer['token_type_ids']
    attention_mask = tokenizer['attention_mask']
    return input_ids,token_type_ids,attention_mask
  
  def load_data(self,path):
    df = pd.read_csv(path)
    text_list = df['review'].to_list()
    labels = df['label'].to_list()
    return text_list, labels
  
  def process_data(self, text_list, labels):
    input_ids,token_type_ids,attention_mask = self.encode_fn(text_list)
    labels = torch.tensor(labels)
    data = TensorDataset(input_ids,token_type_ids,attention_mask,labels)
    return data

  def split_train_val(self, data, labels):
    train_x, val_x, train_y, val_y = train_test_split(data,
                                labels,
                                test_size = 0.2,
                                random_state = 0)
    return train_x, val_x, train_y, val_y

  def flat_accuracy(self, preds, labels):
      """A function for calculating accuracy scores"""
      pred_flat = np.argmax(preds, axis=1).flatten()
      labels_flat = labels.flatten()
      return accuracy_score(labels_flat, pred_flat)

  def train_model(self):
    #訓練模型
      if self.gpu:
        self.model.cuda()
      optimizer = AdamW(self.model.parameters(), lr=self.lr)
      trainData = DataLoader(self.train, batch_size = self.batch_size, shuffle = True)    #處理成多個batch的形式
      valData = DataLoader(self.validation, batch_size = self.val_batch_size, shuffle = True)

      total_steps = len(trainData) * self.epochs
      scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)

      for epoch in range(self.epochs):
          self.model.train()
          total_loss, total_val_loss = 0, 0
          total_eval_accuracy = 0
          print('epoch:' , epoch , ', step_number:' , len(trainData))
          #訓練
          for step,batch in enumerate(trainData):
              outputs  = self.model(input_ids = batch[0].to(self.device),
                                        token_type_ids=batch[1].to(self.device),
                                        attention_mask=batch[2].to(self.device),
                                        labels=batch[3].to(self.device)
                                        )    #輸出loss 和 每一個分類對應的輸出,softmax後纔是預測是對應分類的機率
              loss, logits = outputs.loss, outputs.logits
              total_loss += loss.item()
              loss.backward()
              torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
              optimizer.step()
              scheduler.step()
              if step % 10 == 0 and step > 0:    #每10步輸出一下訓練的結果,flat_accuracy()會對logits進行softmax
                  self.model.eval()
                  logits = logits.detach().cpu().numpy()
                  label_ids = batch[3].cuda().data.cpu().numpy()
                  avg_val_accuracy = self.flat_accuracy(logits, label_ids)
                  print('step:' , step)
                  print(f'Accuracy: {avg_val_accuracy:.4f}')
                  print('\n')
    #每一個epoch結束,就使用validation數據集評估一次模型
          self.model.eval()
          print('testing ....')
          for i, batch in enumerate(valData):
              with torch.no_grad():
                  loss, logits = self.model(input_ids=batch[0].to(self.device),
                                            token_type_ids=batch[1].to(self.device),
                                            attention_mask=batch[2].to(self.device),
                                            labels=batch[3].to(self.device)
                                            )
                  total_val_loss += loss.item()

                  logits = logits.detach().cpu().numpy()
                  label_ids = batch[3].cuda().data.cpu().numpy()
                  total_eval_accuracy += self.flat_accuracy(logits, label_ids)

          avg_train_loss = total_loss / len(trainData)
          avg_val_loss = total_val_loss / len(valData)
          avg_val_accuracy = total_eval_accuracy / len(valData)

          print(f'Train loss     : {avg_train_loss}')
          print(f'Validation loss: {avg_val_loss}')
          print(f'Accuracy: {avg_val_accuracy:.4f}')
          print('\n')
          self.save_model(self.saveModel_path + '-' + str(epoch))

  def save_model(self , path):
    #保存分詞模型和分類模型
      self.model.save_pretrained(path)
      self.tokenizer.save_pretrained(path)

  def load_model(self,path):
    #加載分詞模型和分類模型
      tokenizer = AutoTokenizer.from_pretrained(path)
      model = BertForSequenceClassification.from_pretrained(path)
      return tokenizer,model

  def eval_model(self,Tokenizer, model,text_list,y_true):
    #輸出模型的召回率、準確率、f1-score
      preds = self.predict_batch(Tokenizer, model, text_list)
      print(classification_report(y_true,preds))

  def predict_batch(self, Tokenizer, model, text_list):
      tokenizer = Tokenizer(
          text_list,
          padding = True,
          truncation = True,
          max_length = self.max_len,
          return_tensors='pt'  # 返回的類型爲pytorch tensor
      )
      input_ids = tokenizer['input_ids']
      token_type_ids = tokenizer['token_type_ids']
      attention_mask = tokenizer['attention_mask']
      pred_data = TensorDataset(input_ids,token_type_ids,attention_mask)
      pred_dataloader = DataLoader(pred_data, batch_size=self.batch_size, shuffle=False)
      model = model.to(self.device)
      model.eval()
      preds = []
      for i, batch in enumerate(pred_dataloader):
          with torch.no_grad():
              outputs = model(input_ids=batch[0].to(self.device),
                              token_type_ids=batch[1].to(self.device),
                              attention_mask=batch[2].to(self.device)
                              )
              logits = outputs[0]
              logits = logits.detach().cpu().numpy()
              preds += list(np.argmax(logits, axis=1))
      return preds
if __name__ == '__main__':
  epoch = 3

  pretrained_path = "/content/drive/Shareddrives/xiximayou/pretrained/bert-base-uncased"
  dataset_path = "/content/drive/Shareddrives/xiximayou/datasets"
  save_path = "/content/drive/MyDrive/test_hugging face/checkpoint"
  train_path = os.path.join(dataset_path, "simplifyweibo_4_moods/simplifyweibo_4_moods.csv")
  save_model_path = os.path.join(dataset_path, "pt/bert-base-uncased")
  bert_tokenizer_path = os.path.join(pretrained_path, "bert-base-uncased-vocab.txt")
  bert_config_path = os.path.join(pretrained_path, "bert-base-uncased-config.json")
  bert_model_path = os.path.join(pretrained_path, "bert-base-uncased-pytorch_model.bin")
  model_name = "bert_weibo"
  myBertModel = MyBertModel(
      train = train_path,
      vocab_path = bert_tokenizer_path,
      config_path = bert_config_path,
      pretrain_Model_path = bert_model_path,
      saveModel_path = os.path.join(save_model_path, model_name),
      learning_rate = 2e-5,
      n_class = 4,
      epochs = epoch,
      batch_size = 4,
      val_batch_size = 4,
      max_len = 100 ,
      gpu = True
  )
  myBertModel.train_model()
  Tokenizer, model = myBertModel.load_model(myBertModel.saveModel_path + '-'+ str(epoch-1))
  #text_list, y_true = myBertModel.load_data_predict('xxx.csv')
  #myBertModel.eval_model(Tokenizer, model,text_list,y_true)

使用模型獲得的輸出是:

SequenceClassifierOutput(loss=tensor(1.2209, device='cuda:0', grad_fn=<NllLossBackward>), logits=tensor([[-0.0275, -0.2090, -0.1251, -0.2942],
        [ 0.0310, -0.2028, -0.1399, -0.3605],
        [-0.0671, -0.3543, -0.1225, -0.4625],
        [ 0.1389, -0.1244, -0.2310, -0.3664]], device='cuda:0',
       grad_fn=<AddmmBackward>), hidden_states=None, attentions=None)

所以咱們使用outputs.loss和outputs.logits來得到相關的值。

其他的代碼也沒什麼特別的地方,主要關注下:
  • tokenizer的輸入和輸出;
  • warm up的使用;
  • 使用的模型接口是BertForSequenceClassification,咱們只須要修改類別數爲本身的類別就好了,這裏的類別是4,
相關的函數能夠去查一下文檔:
關於更多的模型能夠去如下地方找到其對應的名字以及預訓練的模型:
在使用各類模型的時候,咱們要注意他們的輸入和輸出是什麼,而後套用相應的框架就能夠了。
處理輸入數據時,咱們也可使用這種方式:
from transformers import (
    DataProcessor,
    InputExample,
    BertConfig,
    BertTokenizer,
    BertForSequenceClassification,
    glue_convert_examples_to_features,
)
import torch.nn as nn 
import torch
class Processor(DataProcessor):
    def __init__(self):
        super(DataProcessor,self).__init__()
    """實體連接數據處理"""

    def get_train_examples(self, inputexample):
        return self._create_examples(
            lines,
            labels,
            set_type='train',
        )

    def get_test_examples(self, inputexample):
        return self._create_examples(
            lines,
            labels,
            set_type='test',
        )

    def get_labels(self):
        return [0, 1]

    def _create_examples(self, lines, labels,set_type):#
        document_examples=[]
        for i, document in enumerate(lines):
            sentence_examples = []
            for j,sentence in enumerate(document):
                
                guid = f'{set_type}-{i}-{j}'
                text_a = sentence
                
                label = labels[i][j]
                sentence_examples.append(InputExample(
                    guid=guid,
                    text_a=text_a,
                    label=label,
                ))
            document_examples.append(sentence_examples)
        return document_examples
    def _create_features(self,document_examples):
        features = []
        for document_example in document_examples:
            examples = document_example
           
            document_features = glue_convert_examples_to_features(
                examples,
                tokenizer,
                max_length=30,
                label_list=get_labels(),
                output_mode= 'classification'
                
            )
            features.append(document_features)
        return features
        
    def creat_train_dataloader(self,train_features):
        dataloader =[]
        for document_features in train_features:
           
            input_ids = torch.LongTensor([f.input_ids for f in document_features])
            attention_mask = torch.LongTensor([f.attention_mask for f in document_features])
            token_type_ids = torch.LongTensor([f.token_type_ids for f in document_features])
            labels = torch.LongTensor([f.label for f in document_features])
            batch = [input_ids,attention_mask,token_type_ids,labels]
            dataloader.append(batch)
        return dataloader
def generate_dataloader(self,data): train_dataloader = self.creat_train_dataloader(self._create_features((self._create_examples(data[0],data[1],'train')))) valid_dataloader = self.creat_train_dataloader(self._create_features((self._create_examples(data[2],data[3],'valid')))) test_dataloader = self.creat_train_dataloader(self._create_features((self._create_examples(data[4],data[5],'test')))) return train_dataloader,valid_dataloader,test_dataloader

繼承DataProcessor類

 

參考:
https://blog.csdn.net/weixin_38471579/article/details/108239629
https://blog.csdn.net/qq_43645301/article/details/108811403
相關文章
相關標籤/搜索