1.app
S1=1+2+4+8+16+··· 2S1= 2+4+8+16+··· 2S1-S1=-1 S1=-1
2.函數
x=0.9999··· 10x=9.9999··· 9x=9 x=1
通常地,已知函數\(y=f\left( x\right)\),\(x_{0},x_{1}\)是定義域內不一樣的兩點,記\(\Delta x=x_{1}-x_{0}\),\(\Delta y=y_{1}-y_{0}=f\left( x_{1}\right) -f\left( x_{0}\right) =f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right)\)。
則當\(\Delta x\neq 0\)時,商\(\dfrac {\Delta y}{\Delta x}=\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\)稱做函數\(y=f\left( x\right)\)在區間\(\left[ x_{0},x_{0}+\Delta x\right]\)或\(\left[ x_{0}+\Delta x,x_{0}\right]\)的平均變化率。spa
求函數\(y=x^{2}\)在區間\(\left[ x_{0},x_{0}+\Delta x\right]\)的平均變化率。
解:\(\dfrac {\Delta y}{\Delta x}=\dfrac {\left( x_{0}+\Delta x\right) ^{2}-x^{2}_{0}}{\Delta x}=\Delta x+2x_{0}\)code
求函數\(y=\dfrac {1}{x}\)在區間\(\left[ x_{0},x_{0}+\Delta x\right]\)的平均變化率。
解:\(\dfrac {\Delta y}{\Delta x}=\dfrac {\dfrac {1}{x_{0}+\Delta x}-\dfrac {1}{x_{0}}}{\Delta x}=-\dfrac {1}{x_{0}\left( x_{0}+\Delta x\right) }\)blog
若是\(\Delta x\)趨近於0,平均變化率\(\dfrac {\Delta y}{\Delta x}=\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\)趨近於常數l,那麼稱常數l爲函數\(y=f\left( x\right)\)在點\(x_{0}\)處的瞬時變化率,記做:
當\(\Delta x\rightarrow 0\)時,\(\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\rightarrow l\)
也記做\[\lim _{\Delta x\rightarrow 0}\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}= l\]pm2
函數\(y=f\left( x\right)\)在點\(x_{0}\)處的瞬時變化率,一般稱爲\(f\left( x\right)\)在點\(x_{0}\)處的導數。
記做:\(f'\left( x_{0}\right)\)
即\[\lim _{\Delta x\rightarrow 0}\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}= f'\left( x_{0}\right)\]table
若是\(y=f\left( x\right)\)在開區間\(\left( a,b\right)\)內每一點都是可導的,區間\(\left( a,b\right)\)內的每個值都對應一個肯定的導數\(f'\left( x\right)\),稱區間\(\left( a,b\right)\)內\(f'\left( x\right)\)可構成一個新的函數,稱爲\(y=f\left( x\right)\)的導函數。
記做:\(f'\left( x\right)(\)或$ y'\(或\)y'x)$,通稱爲導數。class
火箭豎直向上發射,熄火時速度達到100m/,試問熄火多長時間,火箭的速度爲0。
解:
\(h\left( t\right) =100t-\dfrac {1}{2}gt^{2}\)
平均變化率(平均速度):\(\dfrac {h\left( t+\Delta t\right) -h\left( t\right) }{\Delta t}=100-\dfrac {1}{2}g\Delta t-gt\)
瞬時速度:\(\Delta t\rightarrow 0\)時
\(\dfrac {h\left( t+\Delta t\right) -h\left( t\right) }{\Delta t}=100-gt\)
令\(100-gt=0,g=9.8\)
\(t=\dfrac {100}{g}\approx10.2s\)lambda
圓,面積\(S=\pi r^{2}\),周長\(l=2\pi r\)
解:\[S'\left( x\right) =\lim _{\Delta r\rightarrow 0}\dfrac {S\left(r+\Delta r\right) -S\left( r\right) }{\Delta r}\]
\[ =\lim _{\Delta r\rightarrow 0}\dfrac {\pi \left( r-\Delta r\right) ^{2}-r^{2}}{\Delta r}\]
\[ =\lim _{\Delta r\rightarrow 0}\dfrac {2\pi r\Delta r+\pi \Delta r^{2}}{\Delta r}\]
\[ =\lim _{\Delta r\rightarrow 0} {(2\pi r+\pi \Delta r)}=2\pi r\]im
\(A\left( x_{0},f\left( x_{0}\right) \right) , B\left( x_{0}+\Delta x,f\left( x_{0}+\Delta x\right) \right)\)
AB:割線(平均變化率):\(\dfrac {\Delta y}{\Delta x}=\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x}\)
切線(瞬時變化率):\(\Delta x\rightarrow 0\),\(\dfrac {\Delta y}{\Delta x}\rightarrow k\)
\(B\rightarrow A\)(轉動)
割線\(AB\rightarrow\)切線$ AB’$
割線斜率\(\rightarrow\)切線斜率
\[f\left( x_{0}\right)=k=\lim _{\Delta x\rightarrow 0}\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x} \]
函數在一點的切線的斜率就是函數在這點的導數:導數=斜率
求拋物線\(y=x^{2}\)在點\(\left( x_{0},f\left( x_{0}\right) \right)\)切線的斜率。
解:求導數的幾何意義
知\[k=f\left( x_{0}\right)\]
\[=\lim _{\Delta x\rightarrow 0}\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x} \]
\[=\lim _{\Delta x\rightarrow 0}\dfrac {\left( x_{0}+\Delta x\right) ^{2}-x^{2}_{0}}{\Delta x}\]
\[=\lim _{\Delta x\rightarrow 0}(\Delta x+2x_{0})\]
\[=2x_{0}\]
求在(0,0)處切線的斜率
\[f\left( x\right)=k=0\]
求雙曲線\(y=\dfrac {1}{x}\)在點
\(\left( 2,\dfrac {1}{2}\right)\)的切線方程
方程\(y-y_{0}=k\left( x-x_{0}\right)\)
\(k=-\dfrac {1}{x^{2}}=-\dfrac {1}{4}\)
\(y=-\dfrac {1}{4}x+1\)
(1)常值函數的導數
\(y=f\left( x\right) =c\)(c爲常數)
\[y'=f'\left( x\right) =c'=\lim _{\Delta x\rightarrow 0}\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x} \]
\[=\lim _{\Delta x\rightarrow 0} \dfrac {c-c}{\Delta x}=0\]
(2)
\(y=x\\ y'=x'=1\)
(3)
\(y=x^{2}\\ y'=\left( x^2\right) '=2x\)
(4)
\(y=x^{3}\\ y'=3x^{2}\)
(5)
\(y=\dfrac {1}{x}\\ y'=-\dfrac {1}{x^{2}}\)
(6)
\(y=\dfrac {1}{\sqrt {x}}\\ y'=\dfrac {1}{2\sqrt {x_{0}}}\)
\[y'=\lim _{\Delta x\rightarrow 0}\dfrac {f\left( x_{0}+\Delta x\right) -f\left( x_{0}\right) }{\Delta x} \]
\[=\lim _{\Delta x\rightarrow 0}\dfrac {\sqrt {x_{0}+\Delta x}-\sqrt {x_{0}}}{\Delta x} \](分母有理化)
\[=\lim _{\Delta x\rightarrow 0}\dfrac {1}{\sqrt {x_{0}+\Delta x}+\sqrt {x_{0}}}=\dfrac {1}{2\sqrt {x_{0}}} \]
\(y=f\left( x\right) ,y'=f'\left( x\right)\)
$ y=c,y'=0$
$ y=x^{n}\left( n\in N+\right) ,y'=nx^{n-1}$
\(y=x^{\alpha }( \alpha \in Q,x>0), y'=\alpha x^{\alpha -1}\)
\(y= a^{x}(a > 0,a\neq 1),y'=a^{x}\ln a\)
\(y=\log a^{x}( a >0,a\neq 1),y'=\dfrac {1}{x\ln a}\)
特別地
\(y=e^{x},y'=e^{x}\\ y=\ln x,y'=\dfrac {1}{x}\\ y=\sin x,y'=\cos x\\ y=\cos x,y'=-\sin x\)
補充:
\(y=\ln \left| x\right| ,y'=\dfrac {1}{\left| x\right| }\\ y=\tan x,y'=\sec ^{2}x=\dfrac {1}{\cos ^{2}x}\)
\(y=\arcsin x,y'=\dfrac {1}{\sqrt {1-x^{2}}}\\ y=\arccos x,y'=-\dfrac {1}{\sqrt {1-x^{2}}}\)
\(y=\arctan x,y'=\dfrac {1}{1+x^{2}}\\ y=arccotx,y'=-\dfrac {1}{1+x^{2}}\)
證實\(y=\arcsin x,y'=\dfrac {1}{\sqrt {1-x^{2}}}\):
\[\arcsin x=\theta \\ \Downarrow \\ \sin \theta =x\]
\[\cos\Delta\theta =\Delta x\\ \theta '=\dfrac {\Delta \theta }{\Delta x}=\dfrac {1}{\cos \theta }=\dfrac {1}{\sqrt {1-\sin ^{2}\theta }}\\ \Downarrow \\ \left( \arcsin x\right) '=\dfrac {1}{\sqrt {1-x^{2}}}\]
極限:
「\(\dfrac {0}{0}\)」\[\lim _{x\rightarrow 0}\dfrac {\sin x}{x}=1\]
"\(\dfrac {\infty }{\infty }\)"\[\lim _{x\rightarrow 0}\left( 1+\dfrac {1}{x}\right) ^{x}=e\]
或\[\lim _{x\rightarrow 0}\left( 1+x\right) ^{\dfrac {1}{x}}=e\]
求導
\(f\left( x\right) =x^{5}+2x^{4}+x^{3},g\left( x\right) =3^{x}+\ln x,h\left( x\right) =\cos x+\sin x\)
\(\Downarrow\)
\(f'\left( x\right) =5x^{4}+8x^{3}+3x^{2},g'\left( x\right) =3^{x}\ln 3+\dfrac {1}{x}, h'\left( x\right) =-\sin x+\cos x\)
(1)函數和(或差)的求導法則
\(\left[ f\left( x\right) \pm g\left( x\right) \right]'=f'\left( x\right) \pm g'\left( x\right)\)
(2)函數的積的求導法則
\(\left[ f\left( x\right) \cdot g\left( x\right) \right] '=f'\left( x\right) \cdot g\left( x\right) +f\left( x\right) \cdot g'\left( x\right)\)
(3)導數商的求導法則
\(\left[ \dfrac {f\left( x\right) }{g\left( x\right) }\right] ^{'}=\dfrac {f'\left( x\right) g\left( x\right) -f\left( x\right) g'\left( x\right) }{g^{2}\left( x\right) }\)
證實:
\[\left[ \dfrac {f\left( x\right) }{g\left( x\right) }\right] ^{'}=\lim _{\Delta x\rightarrow 0}\dfrac {\dfrac {f\left( x+\Delta x\right) }{g\left( x+\Delta x\right) }-\dfrac {f\left( x\right) }{g\left( x\right) }}{\Delta x}\]
\[=\lim _{\Delta x\rightarrow 0}\dfrac {f\left( x+\Delta x\right) g\left( x\right) -f\left( x\right) g\left( x+\Delta x\right) }{g\left( x+\Delta x\right) g\left( x\right) \Delta x}\]
\[=\dfrac {f'\left( x\right) g\left( x\right) -f\left( x\right) g'\left( x\right) }{g^{2}\left( x\right) }\]
求\(f\left( x\right) =a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots +a_{n-1}x+a_{n}\)的導數
解:
\(f\left( x\right) =na_{0}x^{n-1}+(n-1)a_{1}x^{n-2}+\ldots +a_{n}-1\)
\(y=x\cdot \sin x\)
解:
\(y'=x'\sin x+x\cdot \left( \sin x\right) '\\ =\sin x+x\cdot \cos x\)
\(y=\sin 2x\)
解:
\(y=\sin 2x=2\sin x\cos x\\ y'=2(\cos ^{2}x-\sin ^{2}x )\\ =2\cos 2x\)
\(y=\tan x=\dfrac {\sin x}{\cos x}\)
解:
\(y'=\dfrac {\left( \sin x\right) '\cos x-\sin x\left( \cos x\right)' }{\cos ^{2}x}\)
\(=\dfrac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}\\ =\dfrac {1}{\cos ^{2}x}\)
(1)若是(a,b)內\(f'\left( x\right) >0\),函數單調遞增
(2)若是(a,b)內\(f'\left( x\right) <0\),函數單調遞減
y=x在\(\left( -\infty ,+\infty \right)\)上的單調性
解:\(y'=1 >0\)
\(y=2x^{2}-2x+4\)在\(\left( -\infty ,+\infty \right)\)上的單調性
解:\(y'=2x-2\)
令\(y' >0\),即\(x >1\),在\(\left( 1,+\infty \right)\)上函數單調遞增
令\(y' <0\),即\(x <1\),在\(\left( -\infty ,1\right)\)上函數單調遞減
\(y=x^{3}-4x^{2}+x-1\)
解:
\(y'=3x^{2}-8x+1\)
令\(y' >0\),即在\(\left( -\infty ,\dfrac {4-\sqrt {13}}{3}\right) ,\left( \dfrac {4+\sqrt {13}}{3},+\infty \right)\)上函數單調遞增
令\(y' <0\),即在\(\left( \dfrac {4-\sqrt {13}}{3} ,\dfrac {4+\sqrt {13}}{3} \right)\)上函數單調遞減
\(y=\dfrac {1}{3}x^{3}-4x+4\\ y'=x^{2}-4\)
令\(y=0\)即\(x=\pm2\)
x | (\(-\infty\),-2) | -2 | (-2,2) | 2 | (2,\(+\infty\)) |
---|---|---|---|---|---|
\(f'\left( x\right)\) | + | - | + | ||
\(f\left( x\right)\) | \(\nearrow\) | 極大值 | \(\searrow\) | 極小值 | \(\nearrow\) |
求曲線\(y=x^{2}\)與直線\(x=1,y=0\)所圍成區域的面積。
解:
[0,1]等分。
\(S_{n}=0+\left( \dfrac {1}{n}\right) ^{2}\cdot \dfrac {1}{n}+\left( \dfrac {2}{n}\right) ^{2}\cdot \dfrac {1}{n}+\ldots +\left( \dfrac {n-1}{n}\right) ^{2}\cdot \dfrac {1}{n}=\dfrac {1}{n^{3}}\)
\(\left[ 1^{2}+2^{2}+\ldots +\left( n-1\right) ^{2}\right] =\dfrac {1}{n^{3}}\)
\(\dfrac {n\left( n-1)(2n-1\right) }{6}=\dfrac {1}{6}\left( 1-\dfrac {1}{n}\right) \left( 2-\dfrac {1}{n}\right)\)
\(n\rightarrow \infty\)時
\[\lim _{n\rightarrow \infty }\dfrac {1}{6}\left( 1-\dfrac {1}{n}\right) \left( 2-\dfrac {1}{n}\right)= \dfrac {1}{3}\]
\(y=f\left( u\right) ,u=ax+b\),求\(\dfrac {\Delta y}{\Delta x}\)
解:\(u'=a\)
\(\dfrac {\Delta y}{\Delta x}=\dfrac {\Delta y}{\Delta u}\cdot \dfrac {\Delta u}{\Delta x}\)
\(=f'\left( u\right) \cdot u'\left( x\right)\)
\(=a\cdot f'\left( u\right)\)
\(\mu =x^{-1},g\left( x\right) =4x^{2}+3x\)
解:
\(g\left( u\right) =4u^{2}+3u\\ g'\left( u\right) =8u+3\\ u'=-1\cdot x^{-2}=-\dfrac {1}{x^{2}}\)
\(\left[ \sin \left( 2x+\dfrac {\pi }{3}\right) \right]'\)
解:
\(u=2x+\dfrac {\pi }{3} \\y=\sin u\\ =\cos u\cdot 2\\ =2\cos \left( 2x+\dfrac {\pi }{3}\right)\)
\(\left[ \left( 5x+3\right) ^{5}\right] '\)
解:
\(y=u,u=5x+3,u'=5\)
\(y'=f'\left( u\right) \cdot u'\left( x\right) \\ =5u^{4}\cdot 5\\ =25\left( 5x+3\right) ^{4}\)
\(a=x_{0} <x_{1} <x_{2} <\ldots <x_{n}=b\)
\[I\left( n\right) =\sum ^{n-1}_{i=0}f\left( \varepsilon i\right) \Delta xi\]
\(x_{i}=\max\){\(\Delta xi\)}
\[\lambda _{i}\rightarrow 0\\ \lim _{\lambda i\rightarrow 0}f\left( \varepsilon i\right) \Delta xi\rightarrow l\]定積分
記做\[\int ^{b}_{a}f\left( x\right) \Delta x= \lim _{\lambda i\rightarrow 0}\sum ^{n-1}_{i=0}f\left( \varepsilon i\right) \Delta xi\]
\(f\left( x\right)\):倍積函數
\(S=\int ^{1}_{0}x^{2}\Delta x=\dfrac {1}{3}\)
若是\(F\left( x\right) '=f\left( x\right)\)且\(f\left( x\right)\)在\([a,b]\)內可積
則
\(\int ^{b}_{a}f\left( x\right) \Delta x\)
$ =F\left( x\right) \int ^{b}_{a}$
$ =F\left( b\right) -F\left( a\right) $
\(\int ^{1}_{0}x^{2}\Delta x=\)
解:
\(\because \left( \dfrac {1}{3}x^{3}\right) '=x^{2}\\ \therefore \int ^{1}_{0}x^{2}\Delta x\\ =\dfrac {x^{3}}{3}\int ^{1}_{0}=\dfrac {1}{3}\)
\(\int ^{2}_{0}\left( x^{2}+1\right) \Delta x\\ =\left( \dfrac {x^{3}}{3}+x\right) \int ^{2}_{0}\)
\(\int ^{\pi }_{0}\sin \Delta x\\ =-\cos x\int ^{\pi }_{0}\)