JavaShuo
欄目
標籤
#Paper Reading# On Sampled Metrics for Item Recommendation
時間 2020-12-30
標籤
paper reading
简体版
原文
原文鏈接
論文題目: On Sampled Metrics for Item Recommendation 論文地址: https://dl.acm.org/doi/abs/10.1145/3394486.3403226 論文發表於: KDD 2020 best paper(CCF A類會議) 論文大體內容: 本文主要論述了在推薦領域中,使用採樣testset進行evaluate來比較各個模型,有可能會得出
>>阅读原文<<
相關文章
1.
#Paper Reading# Deep Learning Recommendation Model for Personalization and Recommendation Systems
2.
Tools for reading paper[astro]
3.
#Paper Reading# On the Measure of Intelligence
4.
Paper-Reading
5.
Controllable Multi-Interest Framework for Recommendation
6.
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
7.
Paper Reading《Relation Networks for Object Detection》
8.
Paper reading: Mask RCNN
9.
Paper Reading -- 《Learning to Pay Attention on Spectral Domain:......》
10.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
更多相關文章...
•
Swift for 循環
-
Swift 教程
•
Scala for循環
-
Scala教程
•
RxJava操作符(一)Creating Observables
•
RxJava操作符(六)Utility
相關標籤/搜索
recommendation
item
reading
metrics
paper
deeplearning+metrics
paper 2
Paper Record
paper 1
Paper Note
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
在windows下的虛擬機中,安裝華爲電腦的deepin操作系統
2.
強烈推薦款下載不限速解析神器
3.
【區塊鏈技術】孫宇晨:區塊鏈技術帶來金融服務的信任變革
4.
搜索引起的鏈接分析-計算網頁的重要性
5.
TiDB x 微衆銀行 | 耗時降低 58%,分佈式架構助力實現普惠金融
6.
《數字孿生體技術白皮書》重磅發佈(附完整版下載)
7.
雙十一「避坑」指南:區塊鏈電子合同爲電商交易保駕護航!
8.
區塊鏈產業,怎樣「鏈」住未來?
9.
OpenglRipper使用教程
10.
springcloud請求一次好用一次不好用zuul Name or service not known
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
#Paper Reading# Deep Learning Recommendation Model for Personalization and Recommendation Systems
2.
Tools for reading paper[astro]
3.
#Paper Reading# On the Measure of Intelligence
4.
Paper-Reading
5.
Controllable Multi-Interest Framework for Recommendation
6.
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
7.
Paper Reading《Relation Networks for Object Detection》
8.
Paper reading: Mask RCNN
9.
Paper Reading -- 《Learning to Pay Attention on Spectral Domain:......》
10.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
>>更多相關文章<<