JavaShuo
欄目
標籤
#Paper Reading# RippleNet: Propagating User Preferences on the KG for Recommender Systems
時間 2020-12-30
原文
原文鏈接
論文題目: RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems 論文地址: https://dl.acm.org/citation.cfm?id=3271739 論文發表於: CIKM 2018(CCF B類會議) 論文大體內容: 本文主要介紹了一種通過引入Knowledge
>>阅读原文<<
相關文章
1.
閱讀筆記--RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
2.
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems簡析
3.
#Paper Reading# Wide & Deep Learning for Recommender Systems
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
7.
#Paper Reading# xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems
8.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
9.
Side Information-Knowledge Graph Convolutional Networks for Recommender Systems閱讀筆記
10.
#Paper Reading# On the Measure of Intelligence
更多相關文章...
•
Eclipse 首選項(Preferences)
-
Eclipse 教程
•
Swift for 循環
-
Swift 教程
•
RxJava操作符(一)Creating Observables
•
三篇文章瞭解 TiDB 技術內幕 —— 說計算
相關標籤/搜索
recommender
ripplenet
preferences
systems
propagating
reading
paper
user
mysql..the
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Appium入門
2.
Spring WebFlux 源碼分析(2)-Netty 服務器啓動服務流程 --TBD
3.
wxpython入門第六步(高級組件)
4.
CentOS7.5安裝SVN和可視化管理工具iF.SVNAdmin
5.
jedis 3.0.1中JedisPoolConfig對象缺少setMaxIdle、setMaxWaitMillis等方法,問題記錄
6.
一步一圖一代碼,一定要讓你真正徹底明白紅黑樹
7.
2018-04-12—(重點)源碼角度分析Handler運行原理
8.
Spring AOP源碼詳細解析
9.
Spring Cloud(1)
10.
python簡單爬去油價信息發送到公衆號
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
閱讀筆記--RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
2.
RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems簡析
3.
#Paper Reading# Wide & Deep Learning for Recommender Systems
4.
Paper Reading:Wide & Deep Learning for Recommender Systems
5.
#Paper Reading# Personalized Context-aware Re-ranking for E-commerce Recommender Systems
6.
paper review : Multimodal data fusion framework based on autoencoders for top-N recommender systems
7.
#Paper Reading# xDeepFM:Combining Explicit and Implicit Feature Interactions for Recommender Systems
8.
Paper Notes: Adaptive User Modeling with Long and Short-Term Preferences for Personalized Recommenda
9.
Side Information-Knowledge Graph Convolutional Networks for Recommender Systems閱讀筆記
10.
#Paper Reading# On the Measure of Intelligence
>>更多相關文章<<