N
件物品,揹包最大容量爲V
, 第i件物品的費用爲w[i]
,價值爲v[i]
使用f[i][j]
表示在容量爲j,在前i件物品中(包括i)選擇物品所得到的最大價值
遞推方程爲f[i][j] = max(f[i-1][j], f[i-1][j - w[i]] + v[i])
在是否選擇第i件物品取最大值
從後往前更新就可使用一維數組簡化f[j] = max(f[j], f[j-w[i]] + v[i])
416. Partition Equal Subset Sum數組
class Solution { public: bool canPartition(vector<int>& nums) { int sum = accumulate(nums.begin(), nums.end(), 0); return sum & 1 ? false : subSum(nums, sum >> 1); } bool subSum(vector<int>& nums, int s){ bool dp[s + 1] = {false}; dp[0] = true; for(int n : nums){ for(int i = s; i >=n; i--){ dp[i] = dp [i] || dp[i - n]; } } return dp[s]; } };
每種物品無限件, 遞推方程爲
f[i][v]=max(f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v)
322. Coin Change優化
//超時 class Solution { public: int coinChange(vector<int>& coins, int amount) { int n = coins.size(); if(amount == 0) return 0; vector<vector<int>> f(n+1, vector<int>(amount+1, amount + 1)); for(int i = 0; i < n; i++){ f[i][0] = 0; for(int j = 1; j <= amount; j++){ for(int k = 0; k * coins[i] <= j; k++){ f[i+1][j] = min(f[i+1][j], f[i][j - k * coins[i]] + k); } } } return f[n][amount] < amount + 1 ? f[n][amount] : -1; } };
優化時間,三重循環變爲兩重循環, 注意這兩重循環可交換code
class Solution { public: int coinChange(vector<int>& coins, int amount) { int n = coins.size(); if(amount == 0) return 0; vector<vector<int>> f(n+1, vector<int>(amount+1, amount + 1)); for(int i = 0; i <= n; i++) f[i][0] = 0; for(int j = 1; j <= amount; j++){ for(int i = 0; i < n; i++){ if(j - coins[i] >= 0) f[i+1][j] = min(f[i][j], f[i+1][j - coins[i]] + 1); else f[i+1][j] = f[i][j]; } } return f[n][amount] < amount + 1 ? f[n][amount] : -1; } };
優化空間,二維數組變爲一維數組leetcode
class Solution { public: int coinChange(vector<int>& coins, int amount) { int n = coins.size(); if(amount == 0) return 0; vector<int> f(amount+1, amount + 1); f[0] = 0; for(int j = 1; j <= amount; j++){ for(int i = 0; i < n; i++){ if(j - coins[i] >= 0) f[j] = min(f[j], f[j - coins[i]] + 1); } } return f[amount] < amount + 1 ? f[amount] : -1; } };
518. Coin Change 2
作題的時候仍是要寫個二維的驗證一下get
class Solution { public: int change(int amount, vector<int>& coins) { int n = coins.size(); vector<int> dp(amount + 1, 0); dp[0] = 1; for(int i = 0; i < n; i++){ for(int j = coins[i]; j <= amount; j++){ dp[j] += dp[j - coins[i]]; // dp[i+1][j] = dp[i][j] + dp[i+1][j - coins[i]] } } return dp[amount]; } };
理解合法狀態,要看清題目中說的是正好放滿揹包,仍是最多放滿揹包
前者對應dp[i][0] = 0, dp[i][j] = INF(j != 0, 不是合法狀態)
,後者對應dp[i][0] = 0(全是合法狀態)
it
揹包九講io