JavaShuo
欄目
標籤
(Review cs231n) Optimized Methods
時間 2020-12-30
原文
原文鏈接
Mini-batch SGD的步驟: 1.Sample a batch of data 2.Forward prop it through the graph,get loss 3.backprop to calculate the gradient 4. updata the parameters using the gradient The initialization of weights
>>阅读原文<<
相關文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
更多相關文章...
•
Docker 安裝 MySQL
-
Docker教程
•
R Excel 文件
-
R 語言教程
相關標籤/搜索
methods
cs231n
review
optimized
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
resiprocate 之repro使用
2.
Ubuntu配置Github並且新建倉庫push代碼,從已有倉庫clone代碼,並且push
3.
設計模式9——模板方法模式
4.
avue crud form組件的快速配置使用方法詳細講解
5.
python基礎B
6.
從零開始···將工程上傳到github
7.
Eclipse插件篇
8.
Oracle網絡服務 獨立監聽的配置
9.
php7 fmp模式
10.
第5章 Linux文件及目錄管理命令基礎
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
>>更多相關文章<<