JavaShuo
欄目
標籤
(Review cs231n) Optimized Methods
時間 2020-12-30
原文
原文鏈接
Mini-batch SGD的步驟: 1.Sample a batch of data 2.Forward prop it through the graph,get loss 3.backprop to calculate the gradient 4. updata the parameters using the gradient The initialization of weights
>>阅读原文<<
相關文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
更多相關文章...
•
Docker 安裝 MySQL
-
Docker教程
•
R Excel 文件
-
R 語言教程
相關標籤/搜索
methods
cs231n
review
optimized
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
ubantu 增加搜狗輸入法
2.
用實例講DynamicResource與StaticResource的區別
3.
firewall防火牆
4.
頁面開發之res://ieframe.dll/http_404.htm#問題處理
5.
[實踐通才]-Unity性能優化之Drawcalls入門
6.
中文文本錯誤糾正
7.
小A大B聊MFC:神奇的靜態文本控件--初識DC
8.
手扎20190521——bolg示例
9.
mud怎麼存東西到包_將MUD升級到Unity 5
10.
GMTC分享——當插件化遇到 Android P
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
(Review cs231n) Object Detection
2.
(Review cs231n) Gradient Vectorized
3.
(Review cs231n)loss function and optimization
4.
(Review cs231n) BN and Activation Function
5.
A review of gradient descent optimization methods
6.
CS231n Lecture 15 | Efficient Methods and Hardware for Deep Learning
7.
(Review cs231n) Spatial Localization and Detection(classification and localization)
8.
(Review cs231n) The Gradient Calculation of Neural Network
9.
【CRR-FMM】A Concise Review of Recent Few-shot Meta-learning Methods
10.
solr的Optimized
>>更多相關文章<<