以 構建二叉搜索樹,其中,任意數字均可以做爲根節點來構建二叉搜索樹。當咱們將某一個數字做爲根節點後,其左邊數據將構建爲左子樹,右邊數據將構建爲右子樹。所以,這是一個遞歸問題。node
假設序列爲 ,若以第 個數據爲根節點,其左邊數據 能夠構建出左子樹 left_tree,右邊數據 能夠構建出右子樹 right_tree。它們都存儲在一個向量中,所以,咱們須要遍歷左右子樹全部可能的狀況,分別構建二叉搜索樹。ui
其中要特別注意,若是某一個子樹向量爲空,咱們須要在向量中添加一個空指針,保證循環進行一次,這時候只須要遍歷另外一個子樹便可。spa
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
return generateTrees(1, n);
}
vector<TeeNode*> generateTrees(int begin, int end) {
vector<TreeNode*> all_tree;
vector<TreeNode*> left_tree;
vector<TreeNode*> right_tree;
TreeNode *tree = NULL;
if (begin > end) return all_tree;
for (int i = begin; i <= end; i++)
{
left_tree = generateTrees(begin, i - 1);
right_tree = generateTrees(i + 1, end);
// 左右子樹若是爲空的話須要循環一次
if (left_tree.size() == 0) left_tree.push_back(NULL);
if (right_tree.size() == 0) right_tree.push_back(NULL);
for (int j = 0; j < left_tree.size(); j++)
{
for (int k = 0; k < right_tree.size(); k++)
{
tree = new TreeNode(i); // 每次都須要建一個新樹
tree->left = left_tree[j];
tree->right = right_tree[k];
all_tree.push_back(tree);
}
}
}
return all_tree;
}
};
複製代碼
獲取更多精彩,請關注「seniusen」! 指針