聊聊reactive streams的backpressure

本文主要研究下reactive streams的backpressurereact

reactive streams跟傳統streams的區別

@Test
    public void testShowReactiveStreams() throws InterruptedException {
        Flux.interval(Duration.ofMillis(1000))
                .take(500)
                .subscribe(e -> LOGGER.info("get {}",e));

        Thread.sleep(5*60*1000);
    }

輸出實例以下:框架

18:52:34.118 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
18:52:35.157 [parallel-2] INFO com.example.demo.FluxTest - get 0
18:52:36.156 [parallel-2] INFO com.example.demo.FluxTest - get 1
18:52:37.156 [parallel-2] INFO com.example.demo.FluxTest - get 2
18:52:38.159 [parallel-2] INFO com.example.demo.FluxTest - get 3
18:52:39.157 [parallel-2] INFO com.example.demo.FluxTest - get 4
18:52:40.155 [parallel-2] INFO com.example.demo.FluxTest - get 5
18:52:41.154 [parallel-2] INFO com.example.demo.FluxTest - get 6
18:52:42.158 [parallel-2] INFO com.example.demo.FluxTest - get 7
18:52:43.157 [parallel-2] INFO com.example.demo.FluxTest - get 8
18:52:44.156 [parallel-2] INFO com.example.demo.FluxTest - get 9
18:52:45.154 [parallel-2] INFO com.example.demo.FluxTest - get 10
傳統的list streams不是異步的,比如如一批500件的半成品,得在A環節都處理完,才能下一個環節B,而reactive streams之因此成爲reactive,就比如如這批500件的半成品,A環節每處理完一件就能夠當即推往下個環節B處理,源源不斷,而不是等全部的半成品都在A環節處理再推往B環節。典型的活生生的一個生產流水線的例子。

backpressure

這樣一個生產流水線,有個要求就是每一個環節的處理要可以協調,就像電影起跑線裏頭男主角去工廠打工,流水線花花往他那邊推送貨物,他速度跟不上,致使貨物都掉地上了,最後不得不人工關掉流水線。
在應用程序裏頭,若是發佈者速度過快,而訂閱者速度慢,那麼就會數據就會堆積,控制很差就容易產生內存溢出,而backpressure就專門用來解決這個問題的。異步

pull模型的backpressure

@Test
    public void testPullBackpressure(){
        Flux.just(1, 2, 3, 4)
                .log()
                .subscribe(new Subscriber<Integer>() {
                    private Subscription s;
                    int onNextAmount;

                    @Override
                    public void onSubscribe(Subscription s) {
                        this.s = s;
                        s.request(2);
                    }

                    @Override
                    public void onNext(Integer integer) {
                        System.out.println(integer);
                        onNextAmount++;
                        if (onNextAmount % 2 == 0) {
                            s.request(2);
                        }
                    }

                    @Override
                    public void onError(Throwable t) {}

                    @Override
                    public void onComplete() {}
                });

        try {
            Thread.sleep(10*1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

push模型的backpressure

藉助線程相關的操做符,好比timeout(),delayElements(),buffer(),skip(),take()來控制數據產生速度。

delayElements

@Test
    public void testPushBackpressure() throws InterruptedException {
        Flux.range(1, 1000)
                .delayElements(Duration.ofMillis(200))
                .subscribe(e -> {
                    LOGGER.info("subscribe:{}",e);
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e1) {
                        e1.printStackTrace();
                    }
                });
        Thread.sleep(100*1000);
    }

輸出實例ide

19:37:00.870 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
19:37:01.117 [parallel-1] INFO com.example.demo.FluxTest - subscribe:1
19:37:03.326 [parallel-2] INFO com.example.demo.FluxTest - subscribe:2
19:37:05.535 [parallel-3] INFO com.example.demo.FluxTest - subscribe:3
19:37:07.743 [parallel-4] INFO com.example.demo.FluxTest - subscribe:4
19:37:09.953 [parallel-5] INFO com.example.demo.FluxTest - subscribe:5
19:37:12.156 [parallel-6] INFO com.example.demo.FluxTest - subscribe:6
19:37:14.363 [parallel-7] INFO com.example.demo.FluxTest - subscribe:7
19:37:16.568 [parallel-8] INFO com.example.demo.FluxTest - subscribe:8
19:37:18.775 [parallel-1] INFO com.example.demo.FluxTest - subscribe:9
這是個delayElements的例子,能夠看到數據不丟失,可是延時是生產延時+消費延時

sample

@Test
    public void testSampleBackpressure() throws InterruptedException {
        Flux.range(1, 1000)
                .log()
                .delayElements(Duration.ofMillis(200))
                .sample(Duration.ofMillis(1000))
                .subscribe(e -> {
                    LOGGER.info("subscribe:{}",e);
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e1) {
                        e1.printStackTrace();
                    }
                });
        Thread.sleep(100*1000);
    }

輸出實例this

19:48:40.516 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
19:48:40.544 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
19:48:40.546 [main] INFO reactor.Flux.Range.1 - | onNext(1)
19:48:40.770 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
19:48:40.974 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(3)
19:48:41.175 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(4)
19:48:41.378 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(5)
19:48:41.543 [parallel-1] INFO com.example.demo.FluxTest - subscribe:4
19:48:41.583 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(6)
19:48:41.785 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(7)
19:48:41.989 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(8)
19:48:43.547 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(9)
19:48:43.548 [parallel-1] INFO com.example.demo.FluxTest - subscribe:8
19:48:43.751 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(10)
19:48:43.952 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(11)
能夠看到,因爲訂閱者速度慢,致使部分數據被丟棄

buffer

@Test
    public void testBufferBackpressure() throws InterruptedException {
        Flux.range(1, 1000)
//                .log()
                .delayElements(Duration.ofMillis(200))
                .buffer(Duration.ofMillis(800))
                .subscribe(e -> {
                    LOGGER.info("subscribe:{}",e);
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e1) {
                        e1.printStackTrace();
                    }
                });
        Thread.sleep(100*1000);
    }

輸出實例線程

19:55:06.680 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
19:55:06.712 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
19:55:06.714 [main] INFO reactor.Flux.Range.1 - | onNext(1)
19:55:06.940 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
19:55:07.141 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(3)
19:55:07.343 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(4)
19:55:07.509 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[1, 2, 3]
19:55:07.545 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(5)
19:55:07.748 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(6)
19:55:07.951 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(7)
19:55:08.156 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(8)
19:55:09.512 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[4, 5, 6, 7]
19:55:11.515 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(9)
19:55:11.516 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[8]
19:55:11.719 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(10)
19:55:11.923 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(11)
19:55:12.127 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(12)
19:55:12.330 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(13)
19:55:12.533 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(14)
19:55:12.735 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(15)
19:55:12.941 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(16)
19:55:13.516 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[9, 10, 11, 12, 13, 14, 15]
19:55:15.517 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(17)
19:55:15.517 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[16]
19:55:15.721 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(18)
19:55:15.925 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(19)
19:55:16.127 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(20)
19:55:16.331 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(21)
19:55:16.537 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(22)
19:55:16.738 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(23)
19:55:16.942 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(24)
19:55:17.519 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[17, 18, 19, 20, 21, 22, 23]
19:55:19.522 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(25)
19:55:19.522 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[24]
將每一個800ms內產生的數據堆積爲一批次推送給訂閱者

skip

@Test
    public void testSkip() throws InterruptedException {
        Flux.range(1, 1000)
                .log()
                .delayElements(Duration.ofMillis(200))
                .skip(Duration.ofMillis(800))
                .subscribe(e -> {
                    LOGGER.info("subscribe:{}",e);
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e1) {
                        e1.printStackTrace();
                    }
                });
        Thread.sleep(100*1000);
    }

輸出實例code

20:02:07.558 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
20:02:07.606 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
20:02:07.608 [main] INFO reactor.Flux.Range.1 - | onNext(1)
20:02:07.815 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
20:02:08.016 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(3)
20:02:08.218 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(4)
20:02:08.421 [parallel-5] INFO com.example.demo.FluxTest - subscribe:4
20:02:10.425 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(5)
20:02:10.631 [parallel-6] INFO com.example.demo.FluxTest - subscribe:5
20:02:12.635 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(6)
20:02:12.840 [parallel-7] INFO com.example.demo.FluxTest - subscribe:6
20:02:14.843 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(7)
20:02:15.049 [parallel-8] INFO com.example.demo.FluxTest - subscribe:7
經過skip指定跳過最初一個時間段內產生的數據

take

@Test
    public void testTakeBackpressure() throws InterruptedException {
        Flux.range(1, 1000)
                .log()
                .delayElements(Duration.ofMillis(200))
                .take(Duration.ofMillis(4000))
                .subscribe(e -> {
                    LOGGER.info("subscribe:{}",e);
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e1) {
                        e1.printStackTrace();
                    }
                });
        Thread.sleep(100*1000);
    }

輸出實例ip

20:05:08.366 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
20:05:08.419 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
20:05:08.422 [main] INFO reactor.Flux.Range.1 - | onNext(1)
20:05:08.629 [parallel-2] INFO com.example.demo.FluxTest - subscribe:1
20:05:10.633 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
20:05:10.835 [parallel-3] INFO com.example.demo.FluxTest - subscribe:2
20:05:12.418 [parallel-1] INFO reactor.Flux.Range.1 - | cancel()
經過take表示只推送前面幾個或前面一段時間產生的數據給訂閱者

小結

reactive streams對於具備多個階段的數據處理來講,很是有用,能夠節省不少時間,另外又有backpressure來控制訂閱者速度過慢的問題,很是值得使用。內存

doc

相關文章
相關標籤/搜索