scikit-learn隨機森林調參小結

Bagging與隨機森林算法原理小結中,咱們對隨機森林(Random Forest, 如下簡稱RF)的原理作了總結。本文就從實踐的角度對RF作一個總結。重點講述scikit-learn中RF的調參注意事項,以及和GBDT調參的異同點。html

1、scikit-learn隨機森林類庫概述

    在scikit-learn中,RF的分類類是RandomForestClassifier,迴歸類是RandomForestRegressor。固然RF的變種Extra Trees也有, 分類類ExtraTreesClassifier,迴歸類ExtraTreesRegressor。因爲RF和Extra Trees的區別較小,調參方法基本相同,本文只關注於RF的調參。node

    和GBDT的調參相似,RF須要調參的參數也包括兩部分,第一部分是Bagging框架的參數,第二部分是CART決策樹的參數。下面咱們就對這些參數作一個介紹。python

2、RF框架參數

    首先咱們關注於RF的Bagging框架的參數。這裏能夠和GBDT對比來學習。在scikit-learn 梯度提高樹(GBDT)調參小結中咱們對GBDT的框架參數作了介紹。GBDT的框架參數比較多,重要的有最大迭代器個數,步長和子採樣比例,調參起來比較費力。可是RF則比較簡單,這是由於bagging框架裏的各個弱學習器之間是沒有依賴關係的,這減少的調參的難度。換句話說,達到一樣的調參效果,RF調參時間要比GBDT少一些。git

    下面我來看看RF重要的Bagging框架的參數,因爲RandomForestClassifier和RandomForestRegressor參數絕大部分相同,這裏會將它們一塊兒講,不一樣點會指出。github

    1) n_estimators: 也就是弱學習器的最大迭代次數,或者說最大的弱學習器的個數。通常來講n_estimators過小,容易欠擬合,n_estimators太大,計算量會太大,而且n_estimators到必定的數量後,再增大n_estimators得到的模型提高會很小,因此通常選擇一個適中的數值。默認是100。算法

    2) oob_score :便是否採用袋外樣原本評估模型的好壞。默認識False。我的推薦設置爲True,由於袋外分數反應了一個模型擬合後的泛化能力。微信

    3) criterion: 即CART樹作劃分時對特徵的評價標準。分類模型和迴歸模型的損失函數是不同的。分類RF對應的CART分類樹默認是基尼係數gini,另外一個可選擇的標準是信息增益。迴歸RF對應的CART迴歸樹默認是均方差mse,另外一個能夠選擇的標準是絕對值差mae。通常來講選擇默認的標準就已經很好的。框架

    從上面能夠看出, RF重要的框架參數比較少,主要須要關注的是 n_estimators,即RF最大的決策樹個數。dom

3、RF決策樹參數

    下面咱們再來看RF的決策樹參數,它要調參的參數基本和GBDT相同,以下:函數

    1) RF劃分時考慮的最大特徵數max_features: 可使用不少種類型的值,默認是"auto",意味着劃分時最多考慮\(\sqrt{N}\)個特徵;若是是"log2"意味着劃分時最多考慮\(log_2N\)個特徵;若是是"sqrt"或者"auto"意味着劃分時最多考慮\(\sqrt{N}\)個特徵。若是是整數,表明考慮的特徵絕對數。若是是浮點數,表明考慮特徵百分比,即考慮(百分比xN)取整後的特徵數。其中N爲樣本總特徵數。通常咱們用默認的"auto"就能夠了,若是特徵數很是多,咱們能夠靈活使用剛纔描述的其餘取值來控制劃分時考慮的最大特徵數,以控制決策樹的生成時間。

    2) 決策樹最大深度max_depth: 默承認以不輸入,若是不輸入的話,決策樹在創建子樹的時候不會限制子樹的深度。通常來講,數據少或者特徵少的時候能夠無論這個值。若是模型樣本量多,特徵也多的狀況下,推薦限制這個最大深度,具體的取值取決於數據的分佈。經常使用的能夠取值10-100之間。

    3) 內部節點再劃分所需最小樣本數min_samples_split: 這個值限制了子樹繼續劃分的條件,若是某節點的樣本數少於min_samples_split,則不會繼續再嘗試選擇最優特徵來進行劃分。 默認是2.若是樣本量不大,不須要管這個值。若是樣本量數量級很是大,則推薦增大這個值。

    4) 葉子節點最少樣本數min_samples_leaf: 這個值限制了葉子節點最少的樣本數,若是某葉子節點數目小於樣本數,則會和兄弟節點一塊兒被剪枝。 默認是1,能夠輸入最少的樣本數的整數,或者最少樣本數佔樣本總數的百分比。若是樣本量不大,不須要管這個值。若是樣本量數量級很是大,則推薦增大這個值。

    5)葉子節點最小的樣本權重和min_weight_fraction_leaf:這個值限制了葉子節點全部樣本權重和的最小值,若是小於這個值,則會和兄弟節點一塊兒被剪枝。 默認是0,就是不考慮權重問題。通常來講,若是咱們有較多樣本有缺失值,或者分類樹樣本的分佈類別誤差很大,就會引入樣本權重,這時咱們就要注意這個值了。

    6) 最大葉子節點數max_leaf_nodes: 經過限制最大葉子節點數,能夠防止過擬合,默認是"None」,即不限制最大的葉子節點數。若是加了限制,算法會創建在最大葉子節點數內最優的決策樹。若是特徵很少,能夠不考慮這個值,可是若是特徵分紅多的話,能夠加以限制,具體的值能夠經過交叉驗證獲得。

    7) 節點劃分最小不純度min_impurity_split:  這個值限制了決策樹的增加,若是某節點的不純度(基於基尼係數,均方差)小於這個閾值,則該節點再也不生成子節點。即爲葉子節點 。通常不推薦改動默認值1e-7。

    上面決策樹參數中最重要的包括最大特徵數max_features, 最大深度max_depth, 內部節點再劃分所需最小樣本數min_samples_split和葉子節點最少樣本數min_samples_leaf。

4、4.RF調參實例

    這裏仍然使用GBDT調參時一樣的數據集來作RF調參的實例,數據的下載地址在這。本例咱們採用袋外分數來評估咱們模型的好壞。

    完整代碼參見個人github:https://github.com/nickchen121/machinelearning/blob/master/ensemble-learning/random_forest_classifier.ipynb

    首先,咱們載入須要的類庫:

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.grid_search import GridSearchCV
from sklearn import cross_validation, metrics

import matplotlib.pylab as plt
%matplotlib inline

    接着,咱們把解壓的數據用下面的代碼載入,順便看看數據的類別分佈。

train = pd.read_csv('train_modified.csv')
target='Disbursed' # Disbursed的值就是二元分類的輸出
IDcol = 'ID'
train['Disbursed'].value_counts()

    能夠看到類別輸出以下,也就是類別0的佔大多數。

0    19680
1      320
Name: Disbursed, dtype: int64

    接着咱們選擇好樣本特徵和類別輸出。

x_columns = [x for x in train.columns if x not in [target, IDcol]]
X = train[x_columns]
y = train['Disbursed']

    無論任何參數,都用默認的,咱們擬合下數據看看:

rf0 = RandomForestClassifier(oob_score=True, random_state=10)
rf0.fit(X,y)
print rf0.oob_score_
y_predprob = rf0.predict_proba(X)[:,1]
print "AUC Score (Train): %f" % metrics.roc_auc_score(y, y_predprob)

    輸出以下,可見袋外分數已經很高,並且AUC分數也很高。相對於GBDT的默認參數輸出,RF的默認參數擬合效果對本例要好一些。

0.98005
AUC Score (Train): 0.999833

     咱們首先對n_estimators進行網格搜索:

param_test1 = {'n_estimators':range(10,71,10)}
gsearch1 = GridSearchCV(estimator = RandomForestClassifier(min_samples_split=100,
                                  min_samples_leaf=20,max_depth=8,max_features='sqrt' ,random_state=10), 
                       param_grid = param_test1, scoring='roc_auc',cv=5)
gsearch1.fit(X,y)
gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_

    輸出結果以下:

([mean: 0.80681, std: 0.02236, params: {'n_estimators': 10},
  mean: 0.81600, std: 0.03275, params: {'n_estimators': 20},
  mean: 0.81818, std: 0.03136, params: {'n_estimators': 30},
  mean: 0.81838, std: 0.03118, params: {'n_estimators': 40},
  mean: 0.82034, std: 0.03001, params: {'n_estimators': 50},
  mean: 0.82113, std: 0.02966, params: {'n_estimators': 60},
  mean: 0.81992, std: 0.02836, params: {'n_estimators': 70}],
{'n_estimators': 60},
0.8211334476626017)

    這樣咱們獲得了最佳的弱學習器迭代次數,接着咱們對決策樹最大深度max_depth和內部節點再劃分所需最小樣本數min_samples_split進行網格搜索。

param_test2 = {'max_depth':range(3,14,2), 'min_samples_split':range(50,201,20)}
gsearch2 = GridSearchCV(estimator = RandomForestClassifier(n_estimators= 60, 
                                  min_samples_leaf=20,max_features='sqrt' ,oob_score=True, random_state=10),
   param_grid = param_test2, scoring='roc_auc',iid=False, cv=5)
gsearch2.fit(X,y)
gsearch2.grid_scores_, gsearch2.best_params_, gsearch2.best_score_

    輸出以下:

([mean: 0.79379, std: 0.02347, params: {'min_samples_split': 50, 'max_depth': 3},
  mean: 0.79339, std: 0.02410, params: {'min_samples_split': 70, 'max_depth': 3},
  mean: 0.79350, std: 0.02462, params: {'min_samples_split': 90, 'max_depth': 3},
  mean: 0.79367, std: 0.02493, params: {'min_samples_split': 110, 'max_depth': 3},
  mean: 0.79387, std: 0.02521, params: {'min_samples_split': 130, 'max_depth': 3},
  mean: 0.79373, std: 0.02524, params: {'min_samples_split': 150, 'max_depth': 3},
  mean: 0.79378, std: 0.02532, params: {'min_samples_split': 170, 'max_depth': 3},
  mean: 0.79349, std: 0.02542, params: {'min_samples_split': 190, 'max_depth': 3},
  mean: 0.80960, std: 0.02602, params: {'min_samples_split': 50, 'max_depth': 5},
  mean: 0.80920, std: 0.02629, params: {'min_samples_split': 70, 'max_depth': 5},
  mean: 0.80888, std: 0.02522, params: {'min_samples_split': 90, 'max_depth': 5},
  mean: 0.80923, std: 0.02777, params: {'min_samples_split': 110, 'max_depth': 5},
  mean: 0.80823, std: 0.02634, params: {'min_samples_split': 130, 'max_depth': 5},
  mean: 0.80801, std: 0.02637, params: {'min_samples_split': 150, 'max_depth': 5},
  mean: 0.80792, std: 0.02685, params: {'min_samples_split': 170, 'max_depth': 5},
  mean: 0.80771, std: 0.02587, params: {'min_samples_split': 190, 'max_depth': 5},
  mean: 0.81688, std: 0.02996, params: {'min_samples_split': 50, 'max_depth': 7},
  mean: 0.81872, std: 0.02584, params: {'min_samples_split': 70, 'max_depth': 7},
  mean: 0.81501, std: 0.02857, params: {'min_samples_split': 90, 'max_depth': 7},
  mean: 0.81476, std: 0.02552, params: {'min_samples_split': 110, 'max_depth': 7},
  mean: 0.81557, std: 0.02791, params: {'min_samples_split': 130, 'max_depth': 7},
  mean: 0.81459, std: 0.02905, params: {'min_samples_split': 150, 'max_depth': 7},
  mean: 0.81601, std: 0.02808, params: {'min_samples_split': 170, 'max_depth': 7},
  mean: 0.81704, std: 0.02757, params: {'min_samples_split': 190, 'max_depth': 7},
  mean: 0.82090, std: 0.02665, params: {'min_samples_split': 50, 'max_depth': 9},
  mean: 0.81908, std: 0.02527, params: {'min_samples_split': 70, 'max_depth': 9},
  mean: 0.82036, std: 0.02422, params: {'min_samples_split': 90, 'max_depth': 9},
  mean: 0.81889, std: 0.02927, params: {'min_samples_split': 110, 'max_depth': 9},
  mean: 0.81991, std: 0.02868, params: {'min_samples_split': 130, 'max_depth': 9},
  mean: 0.81788, std: 0.02436, params: {'min_samples_split': 150, 'max_depth': 9},
  mean: 0.81898, std: 0.02588, params: {'min_samples_split': 170, 'max_depth': 9},
  mean: 0.81746, std: 0.02716, params: {'min_samples_split': 190, 'max_depth': 9},
  mean: 0.82395, std: 0.02454, params: {'min_samples_split': 50, 'max_depth': 11},
  mean: 0.82380, std: 0.02258, params: {'min_samples_split': 70, 'max_depth': 11},
  mean: 0.81953, std: 0.02552, params: {'min_samples_split': 90, 'max_depth': 11},
  mean: 0.82254, std: 0.02366, params: {'min_samples_split': 110, 'max_depth': 11},
  mean: 0.81950, std: 0.02768, params: {'min_samples_split': 130, 'max_depth': 11},
  mean: 0.81887, std: 0.02636, params: {'min_samples_split': 150, 'max_depth': 11},
  mean: 0.81910, std: 0.02734, params: {'min_samples_split': 170, 'max_depth': 11},
  mean: 0.81564, std: 0.02622, params: {'min_samples_split': 190, 'max_depth': 11},
  mean: 0.82291, std: 0.02092, params: {'min_samples_split': 50, 'max_depth': 13},
  mean: 0.82177, std: 0.02513, params: {'min_samples_split': 70, 'max_depth': 13},
  mean: 0.82415, std: 0.02480, params: {'min_samples_split': 90, 'max_depth': 13},
  mean: 0.82420, std: 0.02417, params: {'min_samples_split': 110, 'max_depth': 13},
  mean: 0.82209, std: 0.02481, params: {'min_samples_split': 130, 'max_depth': 13},
  mean: 0.81852, std: 0.02227, params: {'min_samples_split': 150, 'max_depth': 13},
  mean: 0.81955, std: 0.02885, params: {'min_samples_split': 170, 'max_depth': 13},
  mean: 0.82092, std: 0.02600, params: {'min_samples_split': 190, 'max_depth': 13}],
{'max_depth': 13, 'min_samples_split': 110},
0.8242016800050813)

    咱們看看咱們如今模型的袋外分數:

rf1 = RandomForestClassifier(n_estimators= 60, max_depth=13, min_samples_split=110,
                                  min_samples_leaf=20,max_features='sqrt' ,oob_score=True, random_state=10)
rf1.fit(X,y)
print rf1.oob_score_

    輸出結果爲:

0.984

    可見此時咱們的袋外分數有必定的提升。也就是時候模型的泛化能力加強了。

    對於內部節點再劃分所需最小樣本數min_samples_split,咱們暫時不能一塊兒定下來,由於這個還和決策樹其餘的參數存在關聯。下面咱們再對內部節點再劃分所需最小樣本數min_samples_split和葉子節點最少樣本數min_samples_leaf一塊兒調參。

param_test3 = {'min_samples_split':range(80,150,20), 'min_samples_leaf':range(10,60,10)}
gsearch3 = GridSearchCV(estimator = RandomForestClassifier(n_estimators= 60, max_depth=13,
                                  max_features='sqrt' ,oob_score=True, random_state=10),
   param_grid = param_test3, scoring='roc_auc',iid=False, cv=5)
gsearch3.fit(X,y)
gsearch3.grid_scores_, gsearch3.best_params_, gsearch3.best_score_

    輸出以下:

([mean: 0.82093, std: 0.02287, params: {'min_samples_split': 80, 'min_samples_leaf': 10},
  mean: 0.81913, std: 0.02141, params: {'min_samples_split': 100, 'min_samples_leaf': 10},
  mean: 0.82048, std: 0.02328, params: {'min_samples_split': 120, 'min_samples_leaf': 10},
  mean: 0.81798, std: 0.02099, params: {'min_samples_split': 140, 'min_samples_leaf': 10},
  mean: 0.82094, std: 0.02535, params: {'min_samples_split': 80, 'min_samples_leaf': 20},
  mean: 0.82097, std: 0.02327, params: {'min_samples_split': 100, 'min_samples_leaf': 20},
  mean: 0.82487, std: 0.02110, params: {'min_samples_split': 120, 'min_samples_leaf': 20},
  mean: 0.82169, std: 0.02406, params: {'min_samples_split': 140, 'min_samples_leaf': 20},
  mean: 0.82352, std: 0.02271, params: {'min_samples_split': 80, 'min_samples_leaf': 30},
  mean: 0.82164, std: 0.02381, params: {'min_samples_split': 100, 'min_samples_leaf': 30},
  mean: 0.82070, std: 0.02528, params: {'min_samples_split': 120, 'min_samples_leaf': 30},
  mean: 0.82141, std: 0.02508, params: {'min_samples_split': 140, 'min_samples_leaf': 30},
  mean: 0.82278, std: 0.02294, params: {'min_samples_split': 80, 'min_samples_leaf': 40},
  mean: 0.82141, std: 0.02547, params: {'min_samples_split': 100, 'min_samples_leaf': 40},
  mean: 0.82043, std: 0.02724, params: {'min_samples_split': 120, 'min_samples_leaf': 40},
  mean: 0.82162, std: 0.02348, params: {'min_samples_split': 140, 'min_samples_leaf': 40},
  mean: 0.82225, std: 0.02431, params: {'min_samples_split': 80, 'min_samples_leaf': 50},
  mean: 0.82225, std: 0.02431, params: {'min_samples_split': 100, 'min_samples_leaf': 50},
  mean: 0.81890, std: 0.02458, params: {'min_samples_split': 120, 'min_samples_leaf': 50},
  mean: 0.81917, std: 0.02528, params: {'min_samples_split': 140, 'min_samples_leaf': 50}],
{'min_samples_leaf': 20, 'min_samples_split': 120},
0.8248650279471544)

    最後咱們再對最大特徵數max_features作調參:

param_test4 = {'max_features':range(3,11,2)}
gsearch4 = GridSearchCV(estimator = RandomForestClassifier(n_estimators= 60, max_depth=13, min_samples_split=120,
                                  min_samples_leaf=20 ,oob_score=True, random_state=10),
   param_grid = param_test4, scoring='roc_auc',iid=False, cv=5)
gsearch4.fit(X,y)
gsearch4.grid_scores_, gsearch4.best_params_, gsearch4.best_score_

    輸出以下:

([mean: 0.81981, std: 0.02586, params: {'max_features': 3},
  mean: 0.81639, std: 0.02533, params: {'max_features': 5},
  mean: 0.82487, std: 0.02110, params: {'max_features': 7},
  mean: 0.81704, std: 0.02209, params: {'max_features': 9}],
{'max_features': 7},
0.8248650279471544)

    用咱們搜索到的最佳參數,咱們再看看最終的模型擬合:

rf2 = RandomForestClassifier(n_estimators= 60, max_depth=13, min_samples_split=120,
                                  min_samples_leaf=20,max_features=7 ,oob_score=True, random_state=10)
rf2.fit(X,y)
print rf2.oob_score_

    此時的輸出爲:

0.984

    可見此時模型的袋外分數基本沒有提升,主要緣由是0.984已是一個很高的袋外分數了,若是想進一步須要提升模型的泛化能力,咱們須要更多的數據。

以上就是RF調參的一個總結,但願能夠幫到朋友們。

 

(歡迎轉載,轉載請註明出處。歡迎溝通交流: 微信:nickchen121) 

 

```

相關文章
相關標籤/搜索