去nvidia官網查詢顯卡對應的驅動,並下載。這裏的顯卡驅動下載連接:Download,密碼:mfxh
下載的時候要注意,顯卡驅動與ubuntu內核版本對應。對應表來自nvidia官網以下:python
Distribution | Kernel* | GCC | GLIBC |
---|---|---|---|
Ubuntu 18.10 | 4.18.0 | 8.2.0 | 2.28 |
Ubuntu 18.04.1 (**) | 4.15.0 | 7.3.0 | 2.27 |
Ubuntu 16.04.5 (**) | 4.4 | 5.4.0 | 2.23 |
Ubuntu 14.04.5 (**) | 3.13 | 4.8.4 | 2.19 |
$ sudo apt-get install --purge nvidia*
$ sudo gedit /etc/modprobe.d/blacklist.conf
在文末添加:blacklist nouveau
執行命令linux
$ sudo update-initramfs -u
而後重啓機器。執行以下命令,確認一下是否關閉。若是什麼都沒顯示,表示已經刪除。ubuntu
$ lsmod | grep nouveau
ctrl+alt+F1進入tty1控制檯,輸入命令:api
$ sudo service lightdm stop //關閉桌面服務 $ cd Downloads/ //進入下載的驅動所在路徑 /* 安裝顯卡驅動,參數解釋 * -no-x-check 關閉x服務器 * -no-nouveau-check 關閉自帶顯卡驅動 * -no-opengl-files 關閉OpenGl服務,不然會出現重複登陸的狀況 */ $ sudo ./NVIDIA-Linux-x86_64-384.111.run -no-x-check -no-nouveau-check -no-opengl-files
接下來進入安裝界面,首先要accept證書,後面的選項選擇默認的就好。
查看是否安裝成功:bash
$ nvidia-smi
若是安裝成功,應該如圖1:服務器
版本 | Python版本 | 編譯器 | CUDA最低版本 | cuDNN最低版本 |
---|---|---|---|---|
tensorflow_gpu-1.13.0 | 2.七、 3.3~3.6 | 4.8 | 10.0 | 7.4 |
tensorflow_gpu-1.5.0 ~1.12.0 | 2.七、 3.3~3.6 | 4.8 | 9 | 7 |
tensorflow_gpu-1.3.0 ~1.3.0 | 2.七、 3.3~3.6 | 4.8 | 8 | 6 |
tensorflow_gpu-1.0.0 ~1.2.0 | 2.七、 3.3~3.6 | 4.8 | 8 | 5.1 |
進入官網下載cuda toolkit 8.0(或者直接google cuda 8.0能夠直接進入),選擇電腦配置對應的版本,選擇runfile類型的文件,如圖2。app
下載成功後,執行命令:ide
$ sudo sh cuda_8.0.61_375.26_linux.run
而後進入安裝,一開始出現的一大堆文字都是End User License Agreement,能夠ctrl+c跳過,在隨後的協議選擇accept協議。注意,在Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26?選擇no,由於咱們已經安裝過nvidia驅動了。
具體選項以下:學習
Logging to /tmp/cuda_install_32359.log Using more to view the EULA. End User License Agreement -------------------------- Preface ------- The following contains specific license terms and conditions for four separate NVIDIA products. By accepting this agreement, you agree to comply with all the terms and conditions applicable to the specific product(s) included herein. NVIDIA CUDA Toolkit Description The NVIDIA CUDA Toolkit provides command-line and graphical tools for building, debugging and optimizing the performance of applications accelerated by NVIDIA GPUs, runtime and math libraries, and documentation including programming guides, --More--(0%) Do you accept the previously read EULA? accept/decline/quit: accept Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 375.26? (y)es/(n)o/(q)uit: n Install the CUDA 8.0 Toolkit? (y)es/(n)o/(q)uit: y Enter Toolkit Location [ default is /usr/local/cuda-8.0 ]: Do you want to install a symbolic link at /usr/local/cuda? (y)es/(n)o/(q)uit: y Install the CUDA 8.0 Samples? (y)es/(n)o/(q)uit: y Enter CUDA Samples Location [ default is /home/ai]: Installing the CUDA Toolkit in /usr/local/cuda-8.0 ... Missing recommended library: libXmu.so Installing the CUDA Samples in /home/ai ... Copying samples to /home/kinny/NVIDIA_CUDA-8.0_Samples now... Finished copying samples.
在~/.bashrc 的最後添加:ui
export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} export CUDA_HOME=/usr/local/cuda
添加完必定要更新一下,不然會出現安裝成功可是沒法使用gpu的狀況。
$ source ~/.bashrc
進入官網下載cuda toolkit 5.1,須要註冊才能使用。下載對應的文件,我這裏的下載選項爲Download cuDNN v5.1 (Jan 20, 2017), for CUDA 8.0,下載下來的文件名爲cudnn-8.0-linux-x64-v5.1.tgz。
解壓文件
$ tar xvzf cudnn-8.0-linux-x64-v5.1.tgz
而後將庫和頭文件copy到cuda目錄(必定是你本身安裝的目錄如/usr/local/cuda-8.0):
$ sudo cp cuda/include/cudnn.h /usr/local/cuda/include $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
接下來修改文件的訪問權限
$ sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
這裏安裝的是tensorflow1.0.1-gpu,下載連接:Download
$ sudo apt-get install python-pip python-dev
$ sudo pip install --upgrade ttensorflow_gpu-1.0.1-cp27-none-linux_x86_64.whl
1.tensorflow import error