SVM(支持向量機)

支持向量機學習方法包括構建由簡至繁的模型:線性可分支持向量機、線性支持向量機及非線性支持向量機。當訓練數據線性可分時,通過硬間隔最大化,學習一個線性的分類器,即線性可分支持向量機,又稱爲硬間隔支持向量機;當訓練數據近似線性可分時,通過軟間隔最大化,也學習一個線性的分類器,即線性支持向量機,又稱爲軟間隔支持向量機;當訓練數據線性不可分時,通過使用核技巧及軟間隔最大化,學習非線性支持向量機。 分類學習
相關文章
相關標籤/搜索