集羣中有N臺機器,每臺機器中有M個時序指標(CPU、內存、IO、流量等),若單獨的針對每條時序曲線作建模,要手寫太多重複的SQL,且對平臺的計算消耗特別大。該如何更好的應用SQL實現上述的場景需求?html
針對系統中的N條時序曲線進行異常檢測後,有要如何快速知道:這其中有哪些時序曲線是有異常的呢?算法
針對場景一中描述的問題,咱們給出以下的數據約束。其中數據在日誌服務的LogStore中按照以下結構存儲:數組
timestamp : unix_time_stamp machine: name1 metricName: cpu0 metricValue: 50 --- timestamp : unix_time_stamp machine: name1 metricName: cpu1 metricValue: 50 --- timestamp : unix_time_stamp machine: name1 metricName: mem metricValue: 50 --- timestamp : unix_time_stamp machine: name2 metricName: mem metricValue: 60
在上述的LogStore中咱們先獲取N個指標的時序信息:機器學習
* | select timestamp - timestamp % 60 as time, machine, metricName, avg(metricValue) from log group by time, machine, metricName
如今咱們針對上述結果作批量的時序異常檢測算法,並獲得N個指標的檢測結果:學習
* | select machine, metricName, ts_predicate_aram(time, value, 5, 1, 1) as res from ( select timestamp - timestamp % 60 as time, machine, metricName, avg(metricValue) as value from log group by time, machine, metricName ) group by machine, metricName
經過上述SQL,咱們獲得的結果的結構以下url
| machine | metricName | [[time, src, pred, upper, lower, prob]] | | ------- | ---------- | --------------------------------------- |
針對上述結果,咱們利用矩陣轉置操做,將結果轉換成以下格式,具體的SQL以下:spa
* | select machine, metricName, res[1] as ts, res[2] as ds, res[3] as preds, res[4] as uppers, res[5] as lowers, res[6] as probs from ( select machine, metricName, array_transpose(ts_predicate_aram(time, value, 5, 1, 1)) as res from ( select timestamp - timestamp % 60 as time, machine, metricName, avg(metricValue) as value from log group by time, machine, metricName ) group by machine, metricName )
通過對二維數組的轉換後,咱們將每行的內容拆分出來,獲得符合預期的結果,具體格式以下:3d
| machine | metricName | ts | ds | preds | uppers | lowers | probs | | ------- | ---------- | -- | -- | ----- | ------ | ------ | ----- |
針對批量檢測的結果,咱們該如何快速的將存在特定異常的結果過濾篩選出來呢?日誌服務平臺提供了針對異常檢測結果的過濾操做。unix
select ts_anomaly_filter(lineName, ts, ds, preds, probs, nWatch, anomalyType)
其中,針對anomalyType有以下說明:日誌
其中,針對nWatch有以下說明:
具體使用以下所示:
* | select ts_anomaly_filter(lineName, ts, ds, preds, probs, cast(5 as bigint), cast(1 as bigint)) from ( select concat(machine, '-', metricName) as lineName, res[1] as ts, res[2] as ds, res[3] as preds, res[4] as uppers, res[5] as lowers, res[6] as probs from ( select machine, metricName, array_transpose(ts_predicate_aram(time, value, 5, 1, 1)) as res from ( select timestamp - timestamp % 60 as time, machine, metricName, avg(metricValue) as value from log group by time, machine, metricName ) group by machine, metricName ) )
經過上述結果,咱們拿到的是一個Row類型的數據,咱們能夠使用以下方式,將具體的結構提煉出來:
* | select res.name, res.ts, res.ds, res.preds, res.probs from ( select ts_anomaly_filter(lineName, ts, ds, preds, probs, cast(5 as bigint), cast(1 as bigint)) as res from ( select concat(machine, '-', metricName) as lineName, res[1] as ts, res[2] as ds, res[3] as preds, res[4] as uppers, res[5] as lowers, res[6] as probs from ( select machine, metricName, array_transpose(ts_predicate_aram(time, value, 5, 1, 1)) as res from ( select timestamp - timestamp % 60 as time, machine, metricName, avg(metricValue) as value from log group by time, machine, metricName ) group by machine, metricName ) ) )
經過上述操做,就能夠實現對批量異常檢測的結果進行過濾處理操做,幫助用戶更好的批量設置告警。
這裏是日誌服務的各類功能的演示 日誌服務總體介紹,各類Demo
原文連接 本文爲雲棲社區原創內容,未經容許不得轉載。