神經網絡中的各種損失函數介紹

不同的損失函數可用於不同的目標。在這篇文章中,我將帶你通過一些示例介紹一些非常常用的損失函數。這篇文章提到的一些參數細節都屬於tensorflow或者keras的實現細節。 損失函數的簡要介紹 損失函數有助於優化神經網絡的參數。我們的目標是通過優化神經網絡的參數(權重)來最大程度地減少神經網絡的損失。通過神經網絡將目標(實際)值與預測值進行匹配,再經過損失函數就可以計算出損失。然後,我們使用梯度下
相關文章
相關標籤/搜索