JavaShuo
欄目
標籤
Alibaba AI Model Tops Humans in Reading Comprehension
時間 2021-01-21
原文
原文鏈接
Score one for machines in the battle of man versus machine, with an Alibaba deep-learning model this month topping humans for the first time in one of the world’s most-challenging reading comprehensio
>>阅读原文<<
相關文章
1.
A Co-Matching Model for Multi-choice Reading Comprehension(譯)
2.
Simple and Effective Multi-Paragraph Reading Comprehension
3.
NEURAL QUESTION REQUIREMENT INSPECTOR FOR ANSWERABILITY PREDICTION IN MACHINE READING COMPREHENSION
4.
A Robust Adversarial Training Approach to Machine Reading Comprehension
5.
【論文筆記03】ReasoNet: Learning to Stop Reading in Machine Comprehension
6.
論文筆記--Multi-Style Generative Reading Comprehension (Masque)
7.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
8.
ReasoNet: Learning to Stop Reading in Machine Comprehension讀書筆記
9.
閱讀《Learning to Ask: Neural Question Generation for Reading Comprehension 》
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 閱讀理解筆記
更多相關文章...
•
SQL IN 操作符
-
SQL 教程
•
Swift for-in 循環
-
Swift 教程
•
C# 中 foreach 遍歷的用法
•
Kotlin學習(一)基本語法
相關標籤/搜索
comprehension
humans
tops
reading
alibaba
model
AI in 美團
work@alibaba
model&animation
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
css 讓chrome支持小於12px的文字
2.
集合的一點小總結
3.
ejb
4.
Selenium WebDriver API
5.
人工智能基礎,我的看法
6.
Non-local Neural及Self-attention
7.
Hbuilder 打開iOS真機調試操作
8.
improved open set domain adaptation with backpropagation 學習筆記
9.
Chrome插件 GitHub-Chart Commits3D直方圖視圖
10.
CISCO ASAv 9.15 - 體驗思科上一代防火牆
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
A Co-Matching Model for Multi-choice Reading Comprehension(譯)
2.
Simple and Effective Multi-Paragraph Reading Comprehension
3.
NEURAL QUESTION REQUIREMENT INSPECTOR FOR ANSWERABILITY PREDICTION IN MACHINE READING COMPREHENSION
4.
A Robust Adversarial Training Approach to Machine Reading Comprehension
5.
【論文筆記03】ReasoNet: Learning to Stop Reading in Machine Comprehension
6.
論文筆記--Multi-Style Generative Reading Comprehension (Masque)
7.
Reading Note: Gated Self-Matching Networks for Reading Comprehension and Question Answering
8.
ReasoNet: Learning to Stop Reading in Machine Comprehension讀書筆記
9.
閱讀《Learning to Ask: Neural Question Generation for Reading Comprehension 》
10.
A Deep Cascade Model for Multi-Document Reading Comprehension瀑布模型 閱讀理解筆記
>>更多相關文章<<