JavaShuo
欄目
標籤
Learning Transferable Features with Deep Adaptation Networks
時間 2020-12-23
標籤
遷移學習
简体版
原文
原文鏈接
經典文章DAN 總函數: 上面的公式中,J函數是一組有標籤樣本的損失,dk2是第l層的mk-mmd距離。 總函數調整的參數是θ,應該是1-8層(1-3層是固定的,4-5是fine-tune,6-8層是learn) ???fine-tune、learn的區別 kernel parameter β是怎麼學習的? 本文的創新點: (參考:對於DAN方法的解讀-Learni
>>阅读原文<<
相關文章
1.
Learning Transferable Features with Deep Adaptation Networks
2.
翻譯「Learning Transferable Features with Deep Adaptation Networks」
3.
對於DAN方法的解讀-Learning Transferable Features with Deep Adaptation Networks
4.
How transferable are features in deep nerual networks? 【paper review】
5.
How transferable are features in deep neural networks?
6.
Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning
7.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
8.
How transferable are features in deep neural networks? 論文筆記
9.
論文筆記:How transferable are features in deep neural networks?
10.
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
PHP curl_version函數
-
PHP參考手冊
•
Java Agent入門實戰(一)-Instrumentation介紹與使用
•
Java Agent入門實戰(三)-JVM Attach原理與使用
相關標籤/搜索
Deep Learning
networks
adaptation
features
learning
deep
with+this
with...connect
Meta-learning
with...as
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Mud Puddles ( bfs )
2.
ReSIProcate環境搭建
3.
SNAT(IP段)和配置網絡服務、網絡會話
4.
第8章 Linux文件類型及查找命令實踐
5.
AIO介紹(八)
6.
中年轉行互聯網,原動力、計劃、行動(中)
7.
詳解如何讓自己的網站/APP/應用支持IPV6訪問,從域名解析配置到服務器配置詳細步驟完整。
8.
PHP 5 構建系統
9.
不看後悔系列!Rocket MQ 使用排查指南(附網盤鏈接)
10.
如何簡單創建虛擬機(CentoOS 6.10)
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Learning Transferable Features with Deep Adaptation Networks
2.
翻譯「Learning Transferable Features with Deep Adaptation Networks」
3.
對於DAN方法的解讀-Learning Transferable Features with Deep Adaptation Networks
4.
How transferable are features in deep nerual networks? 【paper review】
5.
How transferable are features in deep neural networks?
6.
Dense biased networks with deep priori anatomy and hard region adaptation: Semi-supervised learning
7.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
8.
How transferable are features in deep neural networks? 論文筆記
9.
論文筆記:How transferable are features in deep neural networks?
10.
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
>>更多相關文章<<