JavaShuo
欄目
標籤
Unsupervised Domain Adaptation with Residual Transfer Networks(2017)
時間 2021-01-02
標籤
機器學習
欄目
HTML
简体版
原文
原文鏈接
introduction 作者認爲,domain adaption(域適應)方法旨在通過學習domain-invariant feature(域不變特徵)來橋接source domain和target domain,從而能夠在target domain沒有標籤的情況下,利用source domain所學到的分類器對target domain進行預測。 現在已經可以將domain adaption嵌
>>阅读原文<<
相關文章
1.
Unsupervised domain adaptation with residual transfer networks(NIPS 2016)
2.
[cvpr2017]Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
3.
CVPR2019 Transferrable Prototypical Networks for Unsupervised Domain Adaptation
4.
遷移學習-PixelDA-Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
5.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
6.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
7.
Image-Image Domain Adaptation with Preserved Self-Similarity andDomain-Dissimilarity for Person Re-i
8.
Unsupervised Domain Adaptation by Backpropagation(2015)
9.
Domain Adaptation總結(2017.9)
10.
【Transfer Learning】Adversarial Discriminative Domain Adaptation
更多相關文章...
•
ASP Transfer 方法
-
ASP 教程
•
XSLT
元素
-
XSLT 教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
Tomcat學習筆記(史上最全tomcat學習筆記)
相關標籤/搜索
networks
adaptation
residual
unsupervised
transfer
domain
concurrenthashmap#transfer
with+this
with...connect
HTML
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
Duang!超快Wi-Fi來襲
2.
機器學習-補充03 神經網絡之**函數(Activation Function)
3.
git上開源maven項目部署 多module maven項目(多module maven+redis+tomcat+mysql)後臺部署流程學習記錄
4.
ecliple-tomcat部署maven項目方式之一
5.
eclipse新導入的項目經常可以看到「XX cannot be resolved to a type」的報錯信息
6.
Spark RDD的依賴於DAG的工作原理
7.
VMware安裝CentOS-8教程詳解
8.
YDOOK:Java 項目 Spring 項目導入基本四大 jar 包 導入依賴,怎樣在 IDEA 的項目結構中導入 jar 包 導入依賴
9.
簡單方法使得putty(windows10上)可以免密登錄樹莓派
10.
idea怎麼用本地maven
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Unsupervised domain adaptation with residual transfer networks(NIPS 2016)
2.
[cvpr2017]Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
3.
CVPR2019 Transferrable Prototypical Networks for Unsupervised Domain Adaptation
4.
遷移學習-PixelDA-Unsupervised Pixel–Level Domain Adaptation with Generative Adversarial Networks
5.
Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
6.
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning
7.
Image-Image Domain Adaptation with Preserved Self-Similarity andDomain-Dissimilarity for Person Re-i
8.
Unsupervised Domain Adaptation by Backpropagation(2015)
9.
Domain Adaptation總結(2017.9)
10.
【Transfer Learning】Adversarial Discriminative Domain Adaptation
>>更多相關文章<<