Unsafe類在jdk 源碼的多個類中用到,這個類的提供了一些繞開JVM的更底層功能,基於它的實現能夠提升效率。可是,它是一把雙刃劍:正如它的名字所預示的那樣,它是Unsafe的,它所分配的內存須要手動free(不被GC回收)。Unsafe類,提供了JNI某些功能的簡單替代:確保高效性的同時,使事情變得更簡單。java
這篇文章主要是如下文章的整理、翻譯。c++
http://mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe/算法
1. Unsafe API的大部分方法都是native實現,它由105個方法組成,主要包括如下幾類:編程
(1)Info相關。主要返回某些低級別的內存信息:addressSize(), pageSize()數組
(2)Objects相關。主要提供Object和它的域操縱方法:allocateInstance(),objectFieldOffset()安全
(3)Class相關。主要提供Class和它的靜態域操縱方法:staticFieldOffset(),defineClass(),defineAnonymousClass(),ensureClassInitialized()服務器
(4)Arrays相關。數組操縱方法:arrayBaseOffset(),arrayIndexScale()數據結構
(5)Synchronization相關。主要提供低級別同步原語(如基於CPU的CAS(Compare-And-Swap)原語):monitorEnter(),tryMonitorEnter(),monitorExit(),compareAndSwapInt(),putOrderedInt()併發
(6)Memory相關。直接內存訪問方法(繞過JVM堆直接操縱本地內存):allocateMemory(),copyMemory(),freeMemory(),getAddress(),getInt(),putInt()app
2. Unsafe類實例的獲取
Unsafe類設計只提供給JVM信任的啓動類加載器所使用,是一個典型的單例模式類。它的實例獲取方法以下:
public static Unsafe getUnsafe() { Class cc = sun.reflect.Reflection.getCallerClass(2); if (cc.getClassLoader() != null) throw new SecurityException("Unsafe"); return theUnsafe; }
非啓動類加載器直接調用Unsafe.getUnsafe()方法會拋出SecurityException(具體緣由涉及JVM類的雙親加載機制)。
解決辦法有兩個,其一是經過JVM參數-Xbootclasspath指定要使用的類爲啓動類,另一個辦法就是java反射了。
Field f = Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); Unsafe unsafe = (Unsafe) f.get(null);
經過將private單例實例暴力設置accessible爲true,而後經過Field的get方法,直接獲取一個Object強制轉換爲Unsafe。在IDE中,這些方法會被標誌爲Error,能夠經過如下設置解決:
Preferences -> Java -> Compiler -> Errors/Warnings ->
Deprecated and restricted API -> Forbidden reference -> Warning
3. Unsafe類「有趣」的應用場景
(1)繞過類初始化方法。當你想要繞過對象構造方法、安全檢查器或者沒有public的構造方法時,allocateInstance()方法變得很是有用。
class A { private long a; // not initialized value public A() { this.a = 1; // initialization } public long a() { return this.a; } }
如下是構造方法、反射方法和allocateInstance()的對照
A o1 = new A(); // constructor o1.a(); // prints 1 A o2 = A.class.newInstance(); // reflection o2.a(); // prints 1 A o3 = (A) unsafe.allocateInstance(A.class); // unsafe o3.a(); // prints 0
allocateInstance()根本沒有進入構造方法,在單例模式時,咱們彷佛看到了危機。
(2)內存修改
內存修改在c語言中是比較常見的,在Java中,能夠用它繞過安全檢查器。
考慮如下簡單准入檢查規則:
class Guard { private int ACCESS_ALLOWED = 1; public boolean giveAccess() { return 42 == ACCESS_ALLOWED; } }
在正常狀況下,giveAccess總會返回false,但事情不老是這樣
Guard guard = new Guard(); guard.giveAccess(); // false, no access // bypass Unsafe unsafe = getUnsafe(); Field f = guard.getClass().getDeclaredField("ACCESS_ALLOWED"); unsafe.putInt(guard, unsafe.objectFieldOffset(f), 42); // memory corruption guard.giveAccess(); // true, access granted
經過計算內存偏移,並使用putInt()方法,類的ACCESS_ALLOWED被修改。在已知類結構的時候,數據的偏移老是能夠計算出來(與c++中的類中數據的偏移計算是一致的)。
(3)實現相似C語言的sizeOf()函數
經過結合Java反射和objectFieldOffset()函數實現一個C-like sizeOf()函數。
public static long sizeOf(Object o) { Unsafe u = getUnsafe(); HashSet fields = new HashSet(); Class c = o.getClass(); while (c != Object.class) { for (Field f : c.getDeclaredFields()) { if ((f.getModifiers() & Modifier.STATIC) == 0) { fields.add(f); } } c = c.getSuperclass(); } // get offset long maxSize = 0; for (Field f : fields) { long offset = u.objectFieldOffset(f); if (offset > maxSize) { maxSize = offset; } } return ((maxSize/8) + 1) * 8; // padding }
算法的思路很是清晰:從底層子類開始,依次取出它本身和它的全部超類的非靜態域,放置到一個HashSet中(重複的只計算一次,Java是單繼承),而後使用objectFieldOffset()得到一個最大偏移,最後還考慮了對齊。
在32位的JVM中,能夠經過讀取class文件偏移爲12的long來獲取size。
public static long sizeOf(Object object){ return getUnsafe().getAddress( normalize(getUnsafe().getInt(object, 4L)) + 12L); }
其中normalize()函數是一個將有符號int轉爲無符號long的方法
private static long normalize(int value) { if(value >= 0) return value; return (0L >>> 32) & value; }
兩個sizeOf()計算的類的尺寸是一致的。最標準的sizeOf()實現是使用java.lang.instrument,可是,它須要指定命令行參數-javaagent。
(4)實現Java淺複製
標準的淺複製方案是實現Cloneable接口或者本身實現的複製函數,它們都不是多用途的函數。經過結合sizeOf()方法,能夠實現淺複製。
static Object shallowCopy(Object obj) { long size = sizeOf(obj); long start = toAddress(obj); long address = getUnsafe().allocateMemory(size); getUnsafe().copyMemory(start, address, size); return fromAddress(address); }
如下的toAddress()和fromAddress()分別將對象轉換到它的地址以及相反操做。
static long toAddress(Object obj) { Object[] array = new Object[] {obj}; long baseOffset = getUnsafe().arrayBaseOffset(Object[].class); return normalize(getUnsafe().getInt(array, baseOffset)); } static Object fromAddress(long address) { Object[] array = new Object[] {null}; long baseOffset = getUnsafe().arrayBaseOffset(Object[].class); getUnsafe().putLong(array, baseOffset, address); return array[0]; }
以上的淺複製函數能夠應用於任意java對象,它的尺寸是動態計算的。
(5)消去內存中的密碼
密碼字段存儲在String中,可是,String的回收是受到JVM管理的。最安全的作法是,在密碼字段使用完以後,將它的值覆蓋。
Field stringValue = String.class.getDeclaredField("value"); stringValue.setAccessible(true); char[] mem = (char[]) stringValue.get(password); for (int i=0; i < mem.length; i++) { mem[i] = '?'; }
(6)動態加載類
標準的動態加載類的方法是Class.forName()(在編寫jdbc程序時,記憶深入),使用Unsafe也能夠動態加載java 的class文件。
byte[] classContents = getClassContent(); Class c = getUnsafe().defineClass( null, classContents, 0, classContents.length); c.getMethod("a").invoke(c.newInstance(), null); // 1 getClassContent()方法,將一個class文件,讀取到一個byte數組。 private static byte[] getClassContent() throws Exception { File f = new File("/home/mishadoff/tmp/A.class"); FileInputStream input = new FileInputStream(f); byte[] content = new byte[(int)f.length()]; input.read(content); input.close(); return content; }
動態加載、代理、切片等功能中能夠應用。
(7)包裝受檢異常爲運行時異常。
getUnsafe().throwException(new IOException());
當你不但願捕獲受檢異常時,能夠這樣作(並不推薦)。
(8)快速序列化
標準的java Serializable速度很慢,它還限制類必須有public無參構造函數。Externalizable好些,它須要爲要序列化的類指定模式。流行的高效序列化庫,好比kryo依賴於第三方庫,會增長內存的消耗。能夠經過getInt(),getLong(),getObject()等方法獲取類中的域的實際值,將類名稱等信息一塊兒持久化到文件。kryo有使用Unsafe的嘗試,可是沒有具體的性能提高的數據。(http://code.google.com/p/kryo/issues/detail?id=75)
(9)在非Java堆中分配內存
使用java 的new會在堆中爲對象分配內存,而且對象的生命週期內,會被JVM GC管理。
class SuperArray { private final static int BYTE = 1; private long size; private long address; public SuperArray(long size) { this.size = size; address = getUnsafe().allocateMemory(size * BYTE); } public void set(long i, byte value) { getUnsafe().putByte(address + i * BYTE, value); } public int get(long idx) { return getUnsafe().getByte(address + idx * BYTE); } public long size() { return size; } }
Unsafe分配的內存,不受Integer.MAX_VALUE的限制,而且分配在非堆內存,使用它時,須要很是謹慎:忘記手動回收時,會產生內存泄露;非法的地址訪問時,會致使JVM崩潰。在須要分配大的連續區域、實時編程(不能容忍JVM延遲)時,可使用它。java.nio使用這一技術。
(10)Java併發中的應用
經過使用Unsafe.compareAndSwap()能夠用來實現高效的無鎖數據結構。
class CASCounter implements Counter { private volatile long counter = 0; private Unsafe unsafe; private long offset; public CASCounter() throws Exception { unsafe = getUnsafe(); offset = unsafe.objectFieldOffset(CASCounter.class.getDeclaredField("counter")); } @Override public void increment() { long before = counter; while (!unsafe.compareAndSwapLong(this, offset, before, before + 1)) { before = counter; } } @Override public long getCounter() { return counter; } }
經過測試,以上數據結構與java的原子變量的效率基本一致,Java原子變量也使用Unsafe的compareAndSwap()方法,而這個方法最終會對應到cpu的對應原語,所以,它的效率很是高。這裏有一個實現無鎖HashMap的方案(http://www.azulsystems.com/about_us/presentations/lock-free-hash ,這個方案的思路是:分析各個狀態,建立拷貝,修改拷貝,使用CAS原語,自旋鎖),在普通的服務器機器(核心<32),使用ConcurrentHashMap(JDK8之前,默認16路分離鎖實現,JDK8中ConcurrentHashMap已經使用無鎖實現)明顯已經夠用。
//下面是sun.misc.Unsafe.java類源碼 package sun.misc; import java.lang.reflect.Field; /*** * This class should provide access to low-level operations and its * use should be limited to trusted code. Fields can be accessed using * memory addresses, with undefined behaviour occurring if invalid memory * addresses are given. * 這個類提供了一個更底層的操做而且應該在受信任的代碼中使用。能夠經過內存地址 * 存取fields,若是給出的內存地址是無效的那麼會有一個不肯定的運行表現。 * * @author Tom Tromey (tromey@redhat.com) * @author Andrew John Hughes (gnu_andrew@member.fsf.org) */ public class Unsafe { // Singleton class. private static Unsafe unsafe = new Unsafe(); /*** * Private default constructor to prevent creation of an arbitrary * number of instances. * 使用私有默認構造器防止建立多個實例 */ private Unsafe() { } /*** * Retrieve the singleton instance of <code>Unsafe</code>. The calling * method should guard this instance from untrusted code, as it provides * access to low-level operations such as direct memory access. * 獲取<code>Unsafe</code>的單例,這個方法調用應該防止在不可信的代碼中實例, * 由於unsafe類提供了一個低級別的操做,例如直接內存存取。 * * @throws SecurityException if a security manager exists and prevents * access to the system properties. * 若是安全管理器不存在或者禁止訪問系統屬性 */ public static Unsafe getUnsafe() { SecurityManager sm = System.getSecurityManager(); if (sm != null) sm.checkPropertiesAccess(); return unsafe; } /*** * Returns the memory address offset of the given static field. * The offset is merely used as a means to access a particular field * in the other methods of this class. The value is unique to the given * field and the same value should be returned on each subsequent call. * 返回指定靜態field的內存地址偏移量,在這個類的其餘方法中這個值只是被用做一個訪問 * 特定field的一個方式。這個值對於 給定的field是惟一的,而且後續對該方法的調用都應該 * 返回相同的值。 * * @param field the field whose offset should be returned. * 須要返回偏移量的field * @return the offset of the given field. * 指定field的偏移量 */ public native long objectFieldOffset(Field field); /*** * Compares the value of the integer field at the specified offset * in the supplied object with the given expected value, and updates * it if they match. The operation of this method should be atomic, * thus providing an uninterruptible way of updating an integer field. * 在obj的offset位置比較integer field和指望的值,若是相同則更新。這個方法 * 的操做應該是原子的,所以提供了一種不可中斷的方式更新integer field。 * * @param obj the object containing the field to modify. * 包含要修改field的對象 * @param offset the offset of the integer field within <code>obj</code>. * <code>obj</code>中整型field的偏移量 * @param expect the expected value of the field. * 但願field中存在的值 * @param update the new value of the field if it equals <code>expect</code>. * 若是指望值expect與field的當前值相同,設置filed的值爲這個新值 * @return true if the field was changed. * 若是field的值被更改 */ public native boolean compareAndSwapInt(Object obj, long offset, int expect, int update); /*** * Compares the value of the long field at the specified offset * in the supplied object with the given expected value, and updates * it if they match. The operation of this method should be atomic, * thus providing an uninterruptible way of updating a long field. * 在obj的offset位置比較long field和指望的值,若是相同則更新。這個方法 * 的操做應該是原子的,所以提供了一種不可中斷的方式更新long field。 * * @param obj the object containing the field to modify. * 包含要修改field的對象 * @param offset the offset of the long field within <code>obj</code>. * <code>obj</code>中long型field的偏移量 * @param expect the expected value of the field. * 但願field中存在的值 * @param update the new value of the field if it equals <code>expect</code>. * 若是指望值expect與field的當前值相同,設置filed的值爲這個新值 * @return true if the field was changed. * 若是field的值被更改 */ public native boolean compareAndSwapLong(Object obj, long offset, long expect, long update); /*** * Compares the value of the object field at the specified offset * in the supplied object with the given expected value, and updates * it if they match. The operation of this method should be atomic, * thus providing an uninterruptible way of updating an object field. * 在obj的offset位置比較object field和指望的值,若是相同則更新。這個方法 * 的操做應該是原子的,所以提供了一種不可中斷的方式更新object field。 * * @param obj the object containing the field to modify. * 包含要修改field的對象 * @param offset the offset of the object field within <code>obj</code>. * <code>obj</code>中object型field的偏移量 * @param expect the expected value of the field. * 但願field中存在的值 * @param update the new value of the field if it equals <code>expect</code>. * 若是指望值expect與field的當前值相同,設置filed的值爲這個新值 * @return true if the field was changed. * 若是field的值被更改 */ public native boolean compareAndSwapObject(Object obj, long offset, Object expect, Object update); /*** * Sets the value of the integer field at the specified offset in the * supplied object to the given value. This is an ordered or lazy * version of <code>putIntVolatile(Object,long,int)</code>, which * doesn't guarantee the immediate visibility of the change to other * threads. It is only really useful where the integer field is * <code>volatile</code>, and is thus expected to change unexpectedly. * 設置obj對象中offset偏移地址對應的整型field的值爲指定值。這是一個有序或者 * 有延遲的<code>putIntVolatile</cdoe>方法,而且不保證值的改變被其餘線程立 * 即看到。只有在field被<code>volatile</code>修飾而且指望被意外修改的時候 * 使用纔有用。 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the integer field within <code>obj</code>. * <code>obj</code>中整型field的偏移量 * @param value the new value of the field. * field將被設置的新值 * @see #putIntVolatile(Object,long,int) */ public native void putOrderedInt(Object obj, long offset, int value); /*** * Sets the value of the long field at the specified offset in the * supplied object to the given value. This is an ordered or lazy * version of <code>putLongVolatile(Object,long,long)</code>, which * doesn't guarantee the immediate visibility of the change to other * threads. It is only really useful where the long field is * <code>volatile</code>, and is thus expected to change unexpectedly. * 設置obj對象中offset偏移地址對應的long型field的值爲指定值。這是一個有序或者 * 有延遲的<code>putLongVolatile</cdoe>方法,而且不保證值的改變被其餘線程立 * 即看到。只有在field被<code>volatile</code>修飾而且指望被意外修改的時候 * 使用纔有用。 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the long field within <code>obj</code>. * <code>obj</code>中long型field的偏移量 * @param value the new value of the field. * field將被設置的新值 * @see #putLongVolatile(Object,long,long) */ public native void putOrderedLong(Object obj, long offset, long value); /*** * Sets the value of the object field at the specified offset in the * supplied object to the given value. This is an ordered or lazy * version of <code>putObjectVolatile(Object,long,Object)</code>, which * doesn't guarantee the immediate visibility of the change to other * threads. It is only really useful where the object field is * <code>volatile</code>, and is thus expected to change unexpectedly. * 設置obj對象中offset偏移地址對應的object型field的值爲指定值。這是一個有序或者 * 有延遲的<code>putObjectVolatile</cdoe>方法,而且不保證值的改變被其餘線程立 * 即看到。只有在field被<code>volatile</code>修飾而且指望被意外修改的時候 * 使用纔有用。 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the object field within <code>obj</code>. * <code>obj</code>中long型field的偏移量 * @param value the new value of the field. * field將被設置的新值 */ public native void putOrderedObject(Object obj, long offset, Object value); /*** * Sets the value of the integer field at the specified offset in the * supplied object to the given value, with volatile store semantics. * 設置obj對象中offset偏移地址對應的整型field的值爲指定值。支持volatile store語義 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the integer field within <code>obj</code>. * <code>obj</code>中整型field的偏移量 * @param value the new value of the field. * field將被設置的新值 */ public native void putIntVolatile(Object obj, long offset, int value); /*** * Retrieves the value of the integer field at the specified offset in the * supplied object with volatile load semantics. * 獲取obj對象中offset偏移地址對應的整型field的值,支持volatile load語義。 * * @param obj the object containing the field to read. * 包含須要去讀取的field的對象 * @param offset the offset of the integer field within <code>obj</code>. * <code>obj</code>中整型field的偏移量 */ public native int getIntVolatile(Object obj, long offset); /*** * Sets the value of the long field at the specified offset in the * supplied object to the given value, with volatile store semantics. * 設置obj對象中offset偏移地址對應的long型field的值爲指定值。支持volatile store語義 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the long field within <code>obj</code>. * <code>obj</code>中long型field的偏移量 * @param value the new value of the field. * field將被設置的新值 * @see #putLong(Object,long,long) */ public native void putLongVolatile(Object obj, long offset, long value); /*** * Sets the value of the long field at the specified offset in the * supplied object to the given value. * 設置obj對象中offset偏移地址對應的long型field的值爲指定值。 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the long field within <code>obj</code>. * <code>obj</code>中long型field的偏移量 * @param value the new value of the field. * field將被設置的新值 * @see #putLongVolatile(Object,long,long) */ public native void putLong(Object obj, long offset, long value); /*** * Retrieves the value of the long field at the specified offset in the * supplied object with volatile load semantics. * 獲取obj對象中offset偏移地址對應的long型field的值,支持volatile load語義。 * * @param obj the object containing the field to read. * 包含須要去讀取的field的對象 * @param offset the offset of the long field within <code>obj</code>. * <code>obj</code>中long型field的偏移量 * @see #getLong(Object,long) */ public native long getLongVolatile(Object obj, long offset); /*** * Retrieves the value of the long field at the specified offset in the * supplied object. * 獲取obj對象中offset偏移地址對應的long型field的值 * * @param obj the object containing the field to read. * 包含須要去讀取的field的對象 * @param offset the offset of the long field within <code>obj</code>. * <code>obj</code>中long型field的偏移量 * @see #getLongVolatile(Object,long) */ public native long getLong(Object obj, long offset); /*** * Sets the value of the object field at the specified offset in the * supplied object to the given value, with volatile store semantics. * 設置obj對象中offset偏移地址對應的object型field的值爲指定值。支持volatile store語義 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the object field within <code>obj</code>. * <code>obj</code>中object型field的偏移量 * @param value the new value of the field. * field將被設置的新值 * @see #putObject(Object,long,Object) */ public native void putObjectVolatile(Object obj, long offset, Object value); /*** * Sets the value of the object field at the specified offset in the * supplied object to the given value. * 設置obj對象中offset偏移地址對應的object型field的值爲指定值。 * * @param obj the object containing the field to modify. * 包含須要修改field的對象 * @param offset the offset of the object field within <code>obj</code>. * <code>obj</code>中object型field的偏移量 * @param value the new value of the field. * field將被設置的新值 * @see #putObjectVolatile(Object,long,Object) */ public native void putObject(Object obj, long offset, Object value); /*** * Retrieves the value of the object field at the specified offset in the * supplied object with volatile load semantics. * 獲取obj對象中offset偏移地址對應的object型field的值,支持volatile load語義。 * * @param obj the object containing the field to read. * 包含須要去讀取的field的對象 * @param offset the offset of the object field within <code>obj</code>. * <code>obj</code>中object型field的偏移量 */ public native Object getObjectVolatile(Object obj, long offset); /*** * Returns the offset of the first element for a given array class. * To access elements of the array class, this value may be used along with * with that returned by * <a href="#arrayIndexScale"><code>arrayIndexScale</code></a>, * if non-zero. * 獲取給定數組中第一個元素的偏移地址。 * 爲了存取數組中的元素,這個偏移地址與<a href="#arrayIndexScale"><code>arrayIndexScale * </code></a>方法的非0返回值一塊兒被使用。 * @param arrayClass the class for which the first element's address should * be obtained. * 第一個元素地址被獲取的class * @return the offset of the first element of the array class. * 數組第一個元素 的偏移地址 * @see arrayIndexScale(Class) */ public native int arrayBaseOffset(Class arrayClass); /*** * Returns the scale factor used for addressing elements of the supplied * array class. Where a suitable scale factor can not be returned (e.g. * for primitive types), zero should be returned. The returned value * can be used with * <a href="#arrayBaseOffset"><code>arrayBaseOffset</code></a> * to access elements of the class. * 獲取用戶給定數組尋址的換算因子.一個合適的換算因子不能返回的時候(例如:基本類型), * 返回0.這個返回值可以與<a href="#arrayBaseOffset"><code>arrayBaseOffset</code> * </a>一塊兒使用去存取這個數組class中的元素 * * @param arrayClass the class whose scale factor should be returned. * @return the scale factor, or zero if not supported for this array class. */ public native int arrayIndexScale(Class arrayClass); /*** * Releases the block on a thread created by * <a href="#park"><code>park</code></a>. This method can also be used * to terminate a blockage caused by a prior call to <code>park</code>. * This operation is unsafe, as the thread must be guaranteed to be * live. This is true of Java, but not native code. * 釋放被<a href="#park"><code>park</code></a>建立的在一個線程上的阻塞.這個 * 方法也能夠被使用來終止一個先前調用<code>park</code>致使的阻塞. * 這個操做操做時不安全的,所以線程必須保證是活的.這是java代碼不是native代碼。 * @param thread the thread to unblock. * 要解除阻塞的線程 */ public native void unpark(Thread thread); /*** * Blocks the thread until a matching * <a href="#unpark"><code>unpark</code></a> occurs, the thread is * interrupted or the optional timeout expires. If an <code>unpark</code> * call has already occurred, this also counts. A timeout value of zero * is defined as no timeout. When <code>isAbsolute</code> is * <code>true</code>, the timeout is in milliseconds relative to the * epoch. Otherwise, the value is the number of nanoseconds which must * occur before timeout. This call may also return spuriously (i.e. * for no apparent reason). * 阻塞一個線程直到<a href="#unpark"><code>unpark</code></a>出現、線程 * 被中斷或者timeout時間到期。若是一個<code>unpark</code>調用已經出現了, * 這裏只計數。timeout爲0表示永不過時.當<code>isAbsolute</code>爲true時, * timeout是相對於新紀元以後的毫秒。不然這個值就是超時前的納秒數。這個方法執行時 * 也可能不合理地返回(沒有具體緣由) * * @param isAbsolute true if the timeout is specified in milliseconds from * the epoch. * 若是爲true timeout的值是一個相對於新紀元以後的毫秒數 * @param time either the number of nanoseconds to wait, or a time in * milliseconds from the epoch to wait for. * 能夠是一個要等待的納秒數,或者是一個相對於新紀元以後的毫秒數直到 * 到達這個時間點 */ public native void park(boolean isAbsolute, long time); }