反向傳播算法

Chain rule

25-反向傳播算法-鏈式法則.jpg

Multi-output Perceptron

25-反向傳播算法-多層感知機.jpg

Multi-Layer Perceptron

  • 對於多隱藏層結構的神經網絡能夠把隱藏層的節點當作輸出層的節點

25-反向傳播算法-多隱藏層感知機.jpg

  • For an output layer node \(k\in{K}\)

\[ \frac{\partial{E}}{\partial{W_{jk}}}=O_j\delta_k,\,\delta_k=O_k(1-O_k)(O_k-t_k) \]算法

  • For a hidden layer node \(j\in{J}\)

\[ \frac{\partial{E}}{\partial{W_{ij}}}=O_i\delta_j,\,\delta_j=O_j(1-O_j)\sum_{k\in{K}}\delta_kW_{jk} \]網絡

  • 其中\(\delta_k\)能夠看作是\(O_j\)的信息;\(\delta_j\)能夠看作是\(O_i\)的信息
  • 而且下一層的隱藏層偏微分的更新都基於上一隱藏層的偏微分
相關文章
相關標籤/搜索