支持向量機(Support Vector Machine,SVM)算法原理

SVM簡介 支持向量機(support vector machines, SVM)是一種二分類模型,它的基本模型是定義在特徵空間上的間隔最大的線性分類器,間隔最大使它有別於感知機;SVM還包括核技巧,這使它成爲實質上的非線性分類器。SVM的的學習策略就是間隔最大化,可形式化爲一個求解凸二次規劃的問題,也等價於正則化的合頁損失函數的最小化問題。SVM的的學習算法就是求解凸二次規劃的最優化算法。 SV
相關文章
相關標籤/搜索