張寧 Efficient Trajectory Planning for High Speed Flight in Unknown Environmentsreact
高效飛行在未知環境中的有效軌跡規劃
連接:https://pan.baidu.com/s/1l0HtSOU-6QSojq7ELrmLIA 提取碼:ayc1安全
Markus Ryll, John Ware, John Carter and Nick Roy數據結構
There has been considerable recent work in motion planning for UAVs to enable aggressive, highly dynamic flight in known environments with motion capture systems. However, these existing planners have not been shown to enable the same kind of flight in unknown, outdoor environments. In this paper we present a receding horizon planning architecture that enables the fast replanning necessary for reactive obstacle avoidance by combining three techniques. First, we show how previous work in computationally efficient, closed-form trajectory generation method can be coupled with spatial partitioning data structures to reason about the geometry of the environment in real-time. Second, we show how to maintain safety margins during fast flight in unknown environments by planning velocities according to obstacle density. Third, our recedinghorizon, sampling-based motion planner uses minimum-jerk trajectories and closed-loop tracking to enable smooth, robust, high-speed flight with the low angular rates necessary for accurate visual-inertial navigation. We compare against two state-of-the-art, reactive motion planners in simulation and benchmark solution quality against an offline global planner. Finally, we demonstrate our planner over 80 flights with a combined distance of 22km of autonomous quadrotor flights in an urban environment at speeds up to 9.4ms-1.架構
最近在無人機的運動規劃方面進行了大量工做,以便在具備運動捕捉系統的已知環境中實現積極,高度動態的飛行。然而,這些現有的規劃者還沒有被證實可以在未知的室外環境中實現一樣的飛行。在本文中,咱們提出了一種後退的地平線規劃架構,經過結合三種技術,能夠實現反應性避障所需的快速從新規劃。首先,咱們展現了先前在計算上有效的閉合軌跡生成方法中的工做如何與空間劃分數據結構相結合,以實時推理環境的幾何形狀。其次,咱們展現瞭如何經過根據障礙物密度規劃速度來在未知環境中快速飛行期間保持安全裕度。第三,咱們的後退運動,基於採樣的運動規劃器使用最小衝擊軌跡和閉環跟蹤,以實現平穩,穩健,高速飛行,具備精確視覺慣性導航所需的低角速率。咱們將模擬和基準解決方案質量方面的兩個最早進的反應式運動規劃器與一個全局規劃師進行比較。 最後,咱們展現了超過80個飛行計劃器,在城市環境中,自動四旋翼飛行器的總距離爲22km,速度高達9.4ms-1。ide