選擇較高的學習速率(learning rate)。通常狀況下,學習速率的值爲0.1。可是,對於不一樣的問題,理想的學習速率有時候會在0.05到0.3之間波動。選擇對應於此學習速率的理想決策樹數量。XGBoost有一個頗有用的函數「cv」,這個函數能夠在每一次迭代中使用交叉驗證,並返回理想的決策樹數量。node
對於給定的學習速率和決策樹數量,進行決策樹特定參數調優(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在肯定一棵樹的過程當中,咱們能夠選擇不一樣的參數,待會兒我會舉例說明。python
xgboost的正則化參數的調優。(lambda, alpha)。這些參數能夠下降模型的複雜度,從而提升模型的表現。git
下降學習速率,肯定理想參數。dom
#!/usr/bin/python import numpy as np #import scipy.sparse import pickle import xgboost as xgb # 基本例子,從libsvm文件中讀取數據,作二分類 # 數據是libsvm的格式 #1 3:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1 #0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1 #0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1 # 轉換成Dmatrix格式 dtrain = xgb.DMatrix('./data/agaricus.txt.train') dtest = xgb.DMatrix('./data/agaricus.txt.test') # 超參數設定 param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' } # 設定watchlist用於查看模型狀態 watchlist = [(dtest,'eval'), (dtrain,'train')] num_round = 2 bst = xgb.train(param, dtrain, num_round, watchlist) # 使用模型預測 preds = bst.predict(dtest) # 判斷準確率 labels = dtest.get_label() print ('錯誤類爲%f' % (sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) /float(len(preds)))) # 模型存儲 bst.save_model('./model/0001.model')
[15:49:14] 6513x127 matrix with 143286 entries loaded from ./data/agaricus.txt.train [15:49:14] 1611x127 matrix with 35442 entries loaded from ./data/agaricus.txt.test [0] eval-error:0.042831 train-error:0.046522 [1] eval-error:0.021726 train-error:0.022263 錯誤類爲0.021726
# 皮馬印第安人糖尿病數據集 包含不少字段:懷孕次數 口服葡萄糖耐量試驗中血漿葡萄糖濃度 舒張壓(mm Hg) 三頭肌組織褶厚度(mm) # 2小時血清胰島素(μU/ ml) 體重指數(kg/(身高(m)^2) 糖尿病系統功能 年齡(歲) import pandas as pd data = pd.read_csv('./data/Pima-Indians-Diabetes.csv') data.head()
Pregnancies | Glucose | BloodPressure | SkinThickness | Insulin | BMI | DiabetesPedigreeFunction | Age | Outcome | |
---|---|---|---|---|---|---|---|---|---|
0 | 6 | 148 | 72 | 35 | 0 | 33.6 | 0.627 | 50 | 1 |
1 | 1 | 85 | 66 | 29 | 0 | 26.6 | 0.351 | 31 | 0 |
2 | 8 | 183 | 64 | 0 | 0 | 23.3 | 0.672 | 32 | 1 |
3 | 1 | 89 | 66 | 23 | 94 | 28.1 | 0.167 | 21 | 0 |
4 | 0 | 137 | 40 | 35 | 168 | 43.1 | 2.288 | 33 | 1 |
#!/usr/bin/python import numpy as np import pandas as pd import pickle import xgboost as xgb from sklearn.model_selection import train_test_split # 基本例子,從csv文件中讀取數據,作二分類 # 用pandas讀入數據 data = pd.read_csv('./data/Pima-Indians-Diabetes.csv') # 作數據切分 train, test = train_test_split(data) # 轉換成Dmatrix格式 feature_columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] target_column = 'Outcome' xgtrain = xgb.DMatrix(train[feature_columns].values, train[target_column].values) xgtest = xgb.DMatrix(test[feature_columns].values, test[target_column].values) # 參數設定 param = {'max_depth':5, 'eta':0.1, 'silent':1, 'subsample':0.7, 'colsample_bytree':0.7, 'objective':'binary:logistic' } # 設定watchlist用於查看模型狀態 watchlist = [(xgtest,'eval'), (xgtrain,'train')] num_round = 10 bst = xgb.train(param, xgtrain, num_round, watchlist) # 使用模型預測 preds = bst.predict(xgtest) # 判斷準確率 labels = xgtest.get_label() print ('錯誤類爲%f' % (sum(1 for i in range(len(preds)) if int(preds[i]>0.5)!=labels[i]) /float(len(preds)))) # 模型存儲 bst.save_model('./model/0002.model')
[0] eval-error:0.322917 train-error:0.21875 [1] eval-error:0.244792 train-error:0.168403 [2] eval-error:0.255208 train-error:0.182292 [3] eval-error:0.270833 train-error:0.170139 [4] eval-error:0.244792 train-error:0.144097 [5] eval-error:0.25 train-error:0.145833 [6] eval-error:0.229167 train-error:0.144097 [7] eval-error:0.25 train-error:0.145833 [8] eval-error:0.239583 train-error:0.147569 [9] eval-error:0.234375 train-error:0.140625 錯誤類爲0.234375
#!/usr/bin/python import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import pickle import xgboost as xgb from sklearn.model_selection import train_test_split from sklearn.externals import joblib # 基本例子,從csv文件中讀取數據,作二分類 # 用pandas讀入數據 data = pd.read_csv('./data/Pima-Indians-Diabetes.csv') # 作數據切分 train, test = train_test_split(data) # 取出特徵X和目標y的部分 feature_columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] target_column = 'Outcome' train_X = train[feature_columns].values train_y = train[target_column].values test_X = test[feature_columns].values test_y = test[target_column].values # 初始化模型 xgb_classifier = xgb.XGBClassifier(n_estimators=20,\ max_depth=4, \ learning_rate=0.1, \ subsample=0.7, \ colsample_bytree=0.7) # 擬合模型 xgb_classifier.fit(train_X, train_y) # 使用模型預測 preds = xgb_classifier.predict(test_X) # 判斷準確率 print ('錯誤類爲%f' %((preds!=test_y).sum()/float(test_y.shape[0]))) # 模型存儲 joblib.dump(xgb_classifier, './model/0003.model')
錯誤類爲0.276042 ['./model/0003.model']
xgb.cv(param, dtrain, num_round, nfold=5,metrics={'error'}, seed = 0)
train-error-mean | train-error-std | test-error-mean | test-error-std | |
---|---|---|---|---|
0 | 0.006832 | 0.001012 | 0.006756 | 0.001407 |
1 | 0.002994 | 0.002806 | 0.002303 | 0.002524 |
2 | 0.001382 | 0.000352 | 0.001382 | 0.001228 |
3 | 0.001190 | 0.000658 | 0.001382 | 0.001228 |
4 | 0.001382 | 0.000282 | 0.001075 | 0.000921 |
5 | 0.000921 | 0.000506 | 0.001228 | 0.001041 |
6 | 0.000921 | 0.000506 | 0.001228 | 0.001041 |
7 | 0.000921 | 0.000506 | 0.001228 | 0.001041 |
8 | 0.000921 | 0.000506 | 0.001228 | 0.001041 |
9 | 0.000921 | 0.000506 | 0.001228 | 0.001041 |
# 計算正負樣本比,調整樣本權重 def fpreproc(dtrain, dtest, param): label = dtrain.get_label() ratio = float(np.sum(label == 0)) / np.sum(label==1) param['scale_pos_weight'] = ratio return (dtrain, dtest, param) # 先作預處理,計算樣本權重,再作交叉驗證 xgb.cv(param, dtrain, num_round, nfold=5, metrics={'auc'}, seed = 0, fpreproc = fpreproc)
train-auc-mean | train-auc-std | test-auc-mean | test-auc-std | |
---|---|---|---|---|
0 | 0.999772 | 0.000126 | 0.999731 | 0.000191 |
1 | 0.999942 | 0.000044 | 0.999909 | 0.000085 |
2 | 0.999964 | 0.000035 | 0.999926 | 0.000084 |
3 | 0.999979 | 0.000036 | 0.999950 | 0.000089 |
4 | 0.999976 | 0.000043 | 0.999946 | 0.000098 |
5 | 0.999994 | 0.000010 | 0.999988 | 0.000020 |
6 | 0.999993 | 0.000012 | 0.999988 | 0.000020 |
7 | 0.999993 | 0.000012 | 0.999988 | 0.000020 |
8 | 0.999993 | 0.000012 | 0.999988 | 0.000020 |
9 | 0.999993 | 0.000012 | 0.999988 | 0.000020 |
print ('running cross validation, with cutomsized loss function') # 自定義損失函數,須要提供損失函數的一階導和二階導 def logregobj(preds, dtrain): labels = dtrain.get_label() preds = 1.0 / (1.0 + np.exp(-preds)) grad = preds - labels hess = preds * (1.0-preds) return grad, hess # 自定義評估準則,評估預估值和標準答案之間的差距 def evalerror(preds, dtrain): labels = dtrain.get_label() return 'error', float(sum(labels != (preds > 0.0))) / len(labels) watchlist = [(dtest,'eval'), (dtrain,'train')] param = {'max_depth':3, 'eta':0.1, 'silent':1} num_round = 5 # 自定義損失函數訓練 bst = xgb.train(param, dtrain, num_round, watchlist, logregobj, evalerror) # 交叉驗證 xgb.cv(param, dtrain, num_round, nfold = 5, seed = 0, obj = logregobj, feval=evalerror)
running cross validation, with cutomsized loss function [0] eval-rmse:0.306902 train-rmse:0.306163 eval-error:0.518312 train-error:0.517887 [1] eval-rmse:0.17919 train-rmse:0.177276 eval-error:0.518312 train-error:0.517887 [2] eval-rmse:0.172566 train-rmse:0.171727 eval-error:0.016139 train-error:0.014433 [3] eval-rmse:0.269611 train-rmse:0.271113 eval-error:0.016139 train-error:0.014433 [4] eval-rmse:0.396904 train-rmse:0.398245 eval-error:0.016139 train-error:0.014433
train-error-mean | train-error-std | train-rmse-mean | train-rmse-std | test-error-mean | test-error-std | test-rmse-mean | test-rmse-std | |
---|---|---|---|---|---|---|---|---|
0 | 0.517887 | 0.001085 | 0.308880 | 0.005170 | 0.517886 | 0.004343 | 0.309038 | 0.005207 |
1 | 0.517887 | 0.001085 | 0.176504 | 0.002046 | 0.517886 | 0.004343 | 0.177802 | 0.003767 |
2 | 0.014433 | 0.000223 | 0.172680 | 0.003719 | 0.014433 | 0.000892 | 0.174890 | 0.009391 |
3 | 0.014433 | 0.000223 | 0.275761 | 0.001776 | 0.014433 | 0.000892 | 0.276689 | 0.005918 |
4 | 0.014433 | 0.000223 | 0.399889 | 0.003369 | 0.014433 | 0.000892 | 0.400118 | 0.006243 |
#!/usr/bin/python import numpy as np import pandas as pd import pickle import xgboost as xgb from sklearn.model_selection import train_test_split # 基本例子,從csv文件中讀取數據,作二分類 # 用pandas讀入數據 data = pd.read_csv('./data/Pima-Indians-Diabetes.csv') # 作數據切分 train, test = train_test_split(data) # 轉換成Dmatrix格式 feature_columns = ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'] target_column = 'Outcome' xgtrain = xgb.DMatrix(train[feature_columns].values, train[target_column].values) xgtest = xgb.DMatrix(test[feature_columns].values, test[target_column].values) # 參數設定 param = {'max_depth':5, 'eta':0.1, 'silent':1, 'subsample':0.7, 'colsample_bytree':0.7, 'objective':'binary:logistic' } # 設定watchlist用於查看模型狀態 watchlist = [(xgtest,'eval'), (xgtrain,'train')] num_round = 10 bst = xgb.train(param, xgtrain, num_round, watchlist) # 只用第1顆樹預測 ypred1 = bst.predict(xgtest, ntree_limit=1) # 用前9顆樹預測 ypred2 = bst.predict(xgtest, ntree_limit=9) label = xgtest.get_label() print ('用前1顆樹預測的錯誤率爲 %f' % (np.sum((ypred1>0.5)!=label) /float(len(label)))) print ('用前9顆樹預測的錯誤率爲 %f' % (np.sum((ypred2>0.5)!=label) /float(len(label))))
[0] eval-error:0.28125 train-error:0.203125 [1] eval-error:0.182292 train-error:0.1875 [2] eval-error:0.21875 train-error:0.184028 [3] eval-error:0.213542 train-error:0.175347 [4] eval-error:0.223958 train-error:0.164931 [5] eval-error:0.223958 train-error:0.164931 [6] eval-error:0.208333 train-error:0.164931 [7] eval-error:0.192708 train-error:0.15625 [8] eval-error:0.21875 train-error:0.15625 [9] eval-error:0.208333 train-error:0.147569 用前1顆樹預測的錯誤率爲 0.281250 用前9顆樹預測的錯誤率爲 0.218750
import pickle import xgboost as xgb import numpy as np from sklearn.model_selection import KFold, train_test_split, GridSearchCV from sklearn.metrics import confusion_matrix, mean_squared_error from sklearn.datasets import load_iris, load_digits, load_boston rng = np.random.RandomState(31337) # 二分類:混淆矩陣 print("數字0和1的二分類問題") digits = load_digits(2) y = digits['target'] X = digits['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) print("在2折數據上的交叉驗證") for train_index, test_index in kf.split(X): xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index]) predictions = xgb_model.predict(X[test_index]) actuals = y[test_index] print("混淆矩陣:") print(confusion_matrix(actuals, predictions)) # 多分類:混淆矩陣 print("\nIris: 多分類") iris = load_iris() y = iris['target'] X = iris['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) print("在2折數據上的交叉驗證") for train_index, test_index in kf.split(X): xgb_model = xgb.XGBClassifier().fit(X[train_index],y[train_index]) predictions = xgb_model.predict(X[test_index]) actuals = y[test_index] print("混淆矩陣:") print(confusion_matrix(actuals, predictions)) # 迴歸問題:MSE print("\n波士頓房價迴歸預測問題") boston = load_boston() y = boston['target'] X = boston['data'] kf = KFold(n_splits=2, shuffle=True, random_state=rng) print("在2折數據上的交叉驗證") for train_index, test_index in kf.split(X): xgb_model = xgb.XGBRegressor().fit(X[train_index],y[train_index]) predictions = xgb_model.predict(X[test_index]) actuals = y[test_index] print("MSE:",mean_squared_error(actuals, predictions))
數字0和1的二分類問題 在2折數據上的交叉驗證 混淆矩陣: [[87 0] [ 1 92]] 混淆矩陣: [[91 0] [ 3 86]] Iris: 多分類 在2折數據上的交叉驗證 混淆矩陣: [[19 0 0] [ 0 31 3] [ 0 1 21]] 混淆矩陣: [[31 0 0] [ 0 16 0] [ 0 3 25]] 波士頓房價迴歸預測問題 在2折數據上的交叉驗證 [15:53:36] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. MSE: 9.860776812557337 [15:53:36] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. MSE: 15.942418468446029
# 第2種訓練方法的 調參方法:使用sklearn接口的regressor + GridSearchCV print("參數最優化:") y = boston['target'] X = boston['data'] xgb_model = xgb.XGBRegressor() param_dict = {'max_depth': [2,4,6], 'n_estimators': [50,100,200]} clf = GridSearchCV(xgb_model, param_dict, verbose=1) clf.fit(X,y) print(clf.best_score_) print(clf.best_params_)
參數最優化: Fitting 3 folds for each of 9 candidates, totalling 27 fits [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:37] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. [15:53:38] WARNING: d:\build\xgboost\xgboost-0.90.git\src\objective\regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. 0.6001029721598573 {'max_depth': 4, 'n_estimators': 100} [Parallel(n_jobs=1)]: Done 27 out of 27 | elapsed: 0.7s finished
# 第1/2種訓練方法的 調參方法:early stopping # 在訓練集上學習模型,一顆一顆樹添加,在驗證集上看效果,當驗證集效果再也不提高,中止樹的添加與生長 X = digits['data'] y = digits['target'] X_train, X_val, y_train, y_val = train_test_split(X, y, random_state=0) clf = xgb.XGBClassifier() clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc", eval_set=[(X_val, y_val)])
[0] validation_0-auc:0.999497 Will train until validation_0-auc hasn't improved in 10 rounds. [1] validation_0-auc:0.999497 [2] validation_0-auc:0.999497 [3] validation_0-auc:0.999749 [4] validation_0-auc:0.999749 [5] validation_0-auc:0.999749 [6] validation_0-auc:0.999749 [7] validation_0-auc:0.999749 [8] validation_0-auc:0.999749 [9] validation_0-auc:0.999749 [10] validation_0-auc:1 [11] validation_0-auc:1 [12] validation_0-auc:1 [13] validation_0-auc:1 [14] validation_0-auc:1 [15] validation_0-auc:1 [16] validation_0-auc:1 [17] validation_0-auc:1 [18] validation_0-auc:1 [19] validation_0-auc:1 [20] validation_0-auc:1 Stopping. Best iteration: [10] validation_0-auc:1 XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, learning_rate=0.1, max_delta_step=0, max_depth=3, min_child_weight=1, missing=None, n_estimators=100, n_jobs=1, nthread=None, objective='binary:logistic', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=None, subsample=1, verbosity=1)
iris = load_iris() y = iris['target'] X = iris['data'] xgb_model = xgb.XGBClassifier().fit(X,y) print('特徵排序:') feature_names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] # 獲取特徵重要度 feature_importances = xgb_model.feature_importances_ indices = np.argsort(feature_importances)[::-1] for index in indices: print("特徵 %s 重要度爲 %f" %(feature_names[index], feature_importances[index])) %matplotlib inline import matplotlib.pyplot as plt plt.figure(figsize=(16,8)) plt.title("feature importances") plt.bar(range(len(feature_importances)), feature_importances[indices], color='b') plt.xticks(range(len(feature_importances)), np.array(feature_names)[indices], color='b')
特徵排序: 特徵 petal_length 重要度爲 0.595834 特徵 petal_width 重要度爲 0.358166 特徵 sepal_width 重要度爲 0.033481 特徵 sepal_length 重要度爲 0.012520 ([<matplotlib.axis.XTick at 0x1ed5a5bc7b8>, <matplotlib.axis.XTick at 0x1ed5a3e6278>, <matplotlib.axis.XTick at 0x1ed5a65c780>, <matplotlib.axis.XTick at 0x1ed5a669748>], <a list of 4 Text xticklabel objects>)
import os if __name__ == "__main__": try: from multiprocessing import set_start_method except ImportError: raise ImportError("Unable to import multiprocessing.set_start_method." " This example only runs on Python 3.4") set_start_method("forkserver") import numpy as np from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_boston import xgboost as xgb rng = np.random.RandomState(31337) print("Parallel Parameter optimization") boston = load_boston() os.environ["OMP_NUM_THREADS"] = "2" # or to whatever you want y = boston['target'] X = boston['data'] xgb_model = xgb.XGBRegressor() clf = GridSearchCV(xgb_model, {'max_depth': [2, 4, 6],'n_estimators': [50, 100, 200]}, verbose=1, n_jobs=2) clf.fit(X, y) print(clf.best_score_) print(clf.best_params_)