ResNet經過殘差學習解決了深度網絡的退化問題,讓咱們能夠訓練出更深的網絡,這稱得上是深度網絡的一個歷史大突破吧。也許不久會有更好的方式來訓練更深的網絡,讓咱們一塊兒期待吧! 目前,您能夠在人工智能建模平臺 Mo 找到基於tensorflow 的34層的殘差網絡(ResNet)實現樣例,數據集是CIFAR-10 (CIFAR的十分類數據集),這個樣例在測試集上的精度爲90%,驗證集上的精度爲98%。主程序在ResNet_Operator.py中,網絡的Block結構在ResNet_Block.py中,訓練完的模型保存在results文件夾中。 項目源碼地址:momodel.cn/explore/5d1…
參考文獻: [1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385,2015. [2] Y. LeCun, L. Bottou, G. B. Orr, and K.-R.M¨uller. Efficient backprop.In Neural Networks: Tricks of the Trade, pages 9–50. Springer, 1998. [3] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010. [4] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.arXiv:1312.6120, 2013. [5] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:Surpassing human-level performance on imagenet classification. In ICCV, 2015. [6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015. 網絡