Programming Exercise 7: K-means Clustering and Principal Component Analysis
K-Means聚類
findClosestCentroids
給出若干組數據點X,矩陣X每一行表明一組數據,以及K個聚類中心centroids,尋找距離每一個點最近的聚類中心點,換言之:算法
$$\arg\ \min_{idx(1),\cdots,idx(m)}J(idx(1),\cdots,idx(m),\mu_1,\cdots,\mu_K)$$ $$=\frac 1 m \sum_{i=1}^m |x^{(i)}-\mu_{idx(i)}|^2$$app
function idx = findClosestCentroids(X, centroids) %FINDCLOSESTCENTROIDS computes the centroid memberships for every example % idx = FINDCLOSESTCENTROIDS (X, centroids) returns the closest centroids % in idx for a dataset X where each row is a single example. idx = m x 1 % vector of centroid assignments (i.e. each entry in range [1..K]) % % Set K K = size(centroids, 1); % You need to return the following variables correctly. idx = zeros(size(X,1), 1); % ====================== YOUR CODE HERE ====================== % Instructions: Go over every example, find its closest centroid, and store % the index inside idx at the appropriate location. % Concretely, idx(i) should contain the index of the centroid % closest to example i. Hence, it should be a value in the % range 1..K % % Note: You can use a for-loop over the examples to compute this. % mindis=zeros(size(X,1),1); mindis(:)=1e9; idx(:)=0; for i=1:size(X,1) for j=1:K nowdis=(X(i,:)-centroids(j,:))*(X(i,:)-centroids(j,:))'; if(nowdis<mindis(i)) mindis(i)=nowdis; idx(i)=j; end end end % ============================================================= end
computeCentroids
給出若干組數據點X,矩陣X每一行表明一組數據,以及K個聚類中心centroids,更新K個聚類中心點,使得代價函數最小,換言之:dom
$$\arg\ \min_{\mu_1,\cdots,\mu_K}J(idx(1),\cdots,idx(m),\mu_1,\cdots,\mu_K)$$ $$=\frac 1 m \sum_{i=1}^m |x^{(i)}-\mu_{idx(i)}|^2$$ide
$$\mu_t:=\frac {\sum_{idx(i)=t}x^{(i)}}{\sum_{idx(i)=t}1}$$函數
function centroids = computeCentroids(X, idx, K) %COMPUTECENTROIDS returs the new centroids by computing the means of the %data points assigned to each centroid. % centroids = COMPUTECENTROIDS(X, idx, K) returns the new centroids by % computing the means of the data points assigned to each centroid. It is % given a dataset X where each row is a single data point, a vector % idx of centroid assignments (i.e. each entry in range [1..K]) for each % example, and K, the number of centroids. You should return a matrix % centroids, where each row of centroids is the mean of the data points % assigned to it. % % Useful variables [m n] = size(X); % You need to return the following variables correctly. centroids = zeros(K, n); % ====================== YOUR CODE HERE ====================== % Instructions: Go over every centroid and compute mean of all points that % belong to it. Concretely, the row vector centroids(i, :) % should contain the mean of the data points assigned to % centroid i. % % Note: You can use a for-loop over the centroids to compute this. % cluster_num=zeros(K,1); %cluster_num(i)=the point number of the ith cluster for i=1:size(X,1) centroids(idx(i),:)=centroids(idx(i),:)+X(i,:); cluster_num(idx(i))=cluster_num(idx(i))+1; end for i=1:K centroids(i,:)=centroids(i,:)/cluster_num(i); end % ============================================================= end
kMeansInitCentroids
隨機從全部數據點中選K個點做爲初始聚類中心點,具體看代碼oop
function centroids = kMeansInitCentroids(X, K) %KMEANSINITCENTROIDS This function initializes K centroids that are to be %used in K-Means on the dataset X % centroids = KMEANSINITCENTROIDS(X, K) returns K initial centroids to be % used with the K-Means on the dataset X % % You should return this values correctly centroids = zeros(K, size(X, 2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should set centroids to randomly chosen examples from % the dataset X % idx=randperm(size(X,1)); centroids=X(idx(1:K),:); % ============================================================= end
最終測試結果
Fig 1. K-Means聚類10次迭代過程當中,3個聚類中心的變化路徑 測試
Fig 2.保留16色、32色後壓縮獲得的圖片 this
主成分分析
pca
函數要求返回全部數據構成的協方差矩陣$\Sigma$的特徵向量U,每一個特徵向量對應的特徵值構成的對角陣Sspa
$$\Sigma=\frac 1 m X^T X$$3d
對$\Sigma$奇異值分解便可獲得U和S
function [U, S] = pca(X) %PCA Run principal component analysis on the dataset X % [U, S, X] = pca(X) computes eigenvectors of the covariance matrix of X % Returns the eigenvectors U, the eigenvalues (on diagonal) in S % % Useful values [m, n] = size(X); % You need to return the following variables correctly. U = zeros(n); S = zeros(n); % ====================== YOUR CODE HERE ====================== % Instructions: You should first compute the covariance matrix. Then, you % should use the "svd" function to compute the eigenvectors % and eigenvalues of the covariance matrix. % % Note: When computing the covariance matrix, remember to divide by m (the % number of examples). % [U,S,~]=svd((X'*X)/m); % ========================================================================= end
projectData
用前K個主成分(即U的前K列向量)對數據矩陣X降維,X的每一行表明一組數據
以前求得的U裏每一列都是單位向量,對於某組數據(列向量$x^{(i)}$),對其降維就是將其投影到$C(u^{(1)},\cdots,u^{(K)})$子空間,即降維後的向量爲:
$$z^{(i)}=\begin{pmatrix}u^{(1)T}\\vdots\u^{(K)T}\end{pmatrix}x^{(i)}$$
令$U_{reduced}=(u^{(1)},\cdots,u^{(K)})$,則
$$Z^T=(z^{(1)},\cdots,z^{(m)})=\begin{pmatrix}u^{(1)T}\\vdots\u^{(K)T}\end{pmatrix}(x^{(1)},\cdots,x^{(m)})=U_{reduced}^TX^T$$
$$Z=XU_{reduced}$$
function Z = projectData(X, U, K) %PROJECTDATA Computes the reduced data representation when projecting only %on to the top k eigenvectors % Z = projectData(X, U, K) computes the projection of % the normalized inputs X into the reduced dimensional space spanned by % the first K columns of U. It returns the projected examples in Z. % % You need to return the following variables correctly. Z = zeros(size(X, 1), K); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the projection of the data using only the top K % eigenvectors in U (first K columns). % For the i-th example X(i,:), the projection on to the k-th % eigenvector is given as follows: % x = X(i, :)'; % projection_k = x' * U(:, k); % Ureduced=U(:,1:K); Z=(Ureduced'*X')'; % ============================================================= end
recoverData
給出降維到K維後的若干組數據構成的矩陣Z,Z中每一行表明一組降維後的數據,以及協方差矩陣的特徵向量(列向量)構成的矩陣U,恢復出原始數據X_rec
對於每組降維後的數據$z^{(i)}$,只需將前K個特徵向量按$z^{(i)}$線性組合便可恢復數據
$$x_{rec}^{(i)}=(u^{(1)},\cdots,u^{(K)})z^{(i)}$$
$$X_{rec}^T=(x_{rec}^{(1)},\cdots,x_{rec}^{(m)})=(u^{(1)},\cdots,u^{(K)})(z^{(1)},\cdots,z^{(m)})=U_{reduced}Z^T$$
$$X_{rec}=(U_{reduced}Z^T)^T$$
function X_rec = recoverData(Z, U, K) %RECOVERDATA Recovers an approximation of the original data when using the %projected data % X_rec = RECOVERDATA(Z, U, K) recovers an approximation the % original data that has been reduced to K dimensions. It returns the % approximate reconstruction in X_rec. % % You need to return the following variables correctly. X_rec = zeros(size(Z, 1), size(U, 1)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the approximation of the data by projecting back % onto the original space using the top K eigenvectors in U. % % For the i-th example Z(i,:), the (approximate) % recovered data for dimension j is given as follows: % v = Z(i, :)'; % recovered_j = v' * U(j, 1:K)'; % % Notice that U(j, 1:K) is a row vector. % Ureduced=U(:,1:K); X_rec=(Ureduced*(Z'))'; % ============================================================= end
最終測試結果
Fig 1.PCA降維獲得的兩個主成分
Fig 2.原始數據點(藍色)與PCA降維後重構出的數據點(紅色)
Fig 3.PCA降維獲得的主成分臉
Fig 4.原始臉部圖像與PCA降維重構後的臉部圖像
Fig 5.原始數據點(3種特徵)
Fig 6.經PCA降維可視化後的數據(兩種特徵)
Programming Exercise 8: Anomaly Detection and Recommender Systems
單變量高斯分佈實現異常檢測
estimateGaussian
對於m組、n種特徵的數據,假設其全部特徵都是相互獨立的,$P(x|\mu;\sigma^2)$是數據x正常的機率,那麼
$$P(x|\mu;\sigma^2)=P(x_1|\mu_1;\sigma_1^2)\cdots P(x_n|\mu_n;\sigma_n^2)$$
其中
$$\mu_t=\frac 1 m \sum_{i=1}^m x_t^{(i)}$$
$$\sigma_t^2=\frac 1 m \sum_{i=1}^m (x_t^{(i)}-\mu_t)^2$$
function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estimates the parameters of a %Gaussian distribution using the data in X % [mu sigma2] = estimateGaussian(X), % The input X is the dataset with each n-dimensional data point in one row % The output is an n-dimensional vector mu, the mean of the data set % and the variances sigma^2, an n x 1 vector % % Useful variables [m, n] = size(X); % You should return these values correctly mu = zeros(n, 1); sigma2 = zeros(n, 1); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the mean of the data and the variances % In particular, mu(i) should contain the mean of % the data for the i-th feature and sigma2(i) % should contain variance of the i-th feature. % mu=(mean(X))'; for i=1:n sigma2(i)=sum((X(:,i)-mu(i)).*(X(:,i)-mu(i)))/m; end % ============================================================= end
selectThreshold
用預測機率pval
和Ground Truth yval
選取最合適的$\epsilon$,使得F1 Score最大
令Positive爲異常(出現頻率極小),Negtive爲正常(出現頻率大),則
TP=True Positive,預測爲Positive而且預測正確的個數
TN=True Negative,預測爲Negative而且預測正確的個數
FP=False Positive,預測爲Positive而且預測錯誤的個數
FN=False Negative,預測爲Negative而且預測錯誤的個數
Precision爲準確率(查準率),Recall爲召回率(查全率)
$$Precision=\frac {TP}{TP+FP}$$
$$Recall=\frac {TP}{TP+FN}$$
$$F_1=2\frac {Precision·Recall}{Precision+Recall}$$
function [bestEpsilon bestF1] = selectThreshold(yval, pval) %SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting %outliers % [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best % threshold to use for selecting outliers based on the results from a % validation set (pval) and the ground truth (yval). % bestEpsilon = 0; bestF1 = 0; F1 = 0; stepsize = (max(pval) - min(pval)) / 1000; for epsilon = min(pval):stepsize:max(pval) % ====================== YOUR CODE HERE ====================== % Instructions: Compute the F1 score of choosing epsilon as the % threshold and place the value in F1. The code at the % end of the loop will compare the F1 score for this % choice of epsilon and set it to be the best epsilon if % it is better than the current choice of epsilon. % % Note: You can use predictions = (pval < epsilon) to get a binary vector % of 0's and 1's of the outlier predictions predictions=(pval<epsilon); truePositive=sum((predictions==yval)&(predictions)); falsePositive=sum((predictions~=yval)&(predictions)); trueNegative=sum((predictions==yval)&(~predictions)); falseNegative=sum((predictions~=yval)&(~predictions)); precision=truePositive/(truePositive+falsePositive); recall=truePositive/(truePositive+falseNegative); F1=2*(precision*recall)/(precision+recall); % ============================================================= if F1 > bestF1 bestF1 = F1; bestEpsilon = epsilon; end end end
最終測試結果
Fig 1.用訓練樣本擬合出的高斯分佈等高線圖
Fig 2.用自動選取的閾值篩選出的異常點
基於內容的推薦系統、協同過濾算法
cofiCostFunc
代價函數
$$J(\theta^{(1)},\cdots,\theta^{(u_n)},x^{(1)},\cdots,x^{(u_m)})=$$ $$\frac 1 2 \sum_{i,j:R(i,j)=1}(\theta^{(j)T}x^{(i)}-y^{(i,j)})^2+\frac \lambda 2 \sum_{j=1}^{n_u}\sum_{k=1}^{n_f}\theta_k^{(j)2}+\frac \lambda 2 \sum_{i=1}^{n_m}\sum_{k=1}^{n_f}x_k^{(i)2}$$
梯度降低:
$$\frac {\partial J}{\partial x_k^{(i)}}=\sum_{j:R(i,j)=1}(\theta^{(j)T}x^{(i)}-y^{(i,j)})\theta_k^{(j)}+\lambda x_k^{(i)}$$
$$\frac {\partial J}{\partial \theta_k^{(j)}}=\sum_{i:R(i,j)=1}(\theta^{(j)T}x^{(i)}-y^{(i,j)})x_k^{(i)}+\lambda\theta_k^{(j)}$$
先嚐試用一堆for循環實現梯度降低的公式,發現matlab效率過低,訓練速度太慢
function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ... num_features, lambda) %COFICOSTFUNC Collaborative filtering cost function % [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ... % num_features, lambda) returns the cost and gradient for the % collaborative filtering problem. % % Unfold the U and W matrices from params X = reshape(params(1:num_movies*num_features), num_movies, num_features); Theta = reshape(params(num_movies*num_features+1:end), ... num_users, num_features); % You need to return the following values correctly J = 0; X_grad = zeros(size(X)); Theta_grad = zeros(size(Theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost function and gradient for collaborative % filtering. Concretely, you should first implement the cost % function (without regularization) and make sure it is % matches our costs. After that, you should implement the % gradient and use the checkCostFunction routine to check % that the gradient is correct. Finally, you should implement % regularization. % % Notes: X - num_movies x num_features matrix of movie features % Theta - num_users x num_features matrix of user features % Y - num_movies x num_users matrix of user ratings of movies % R - num_movies x num_users matrix, where R(i, j) = 1 if the % i-th movie was rated by the j-th user % % You should set the following variables correctly: % % X_grad - num_movies x num_features matrix, containing the % partial derivatives w.r.t. to each element of X % Theta_grad - num_users x num_features matrix, containing the % partial derivatives w.r.t. to each element of Theta % nm=size(Y,1); nf=size(X,2); nu=size(Y,2); J=sum(sum(((Theta*X'-Y').*R').^2))/2+... (lambda*sum(sum(Theta.^2))/2)+(lambda*sum(sum(X.^2))/2); for i=1:nm for k=1:nf for j=1:nu if(R(i,j)==1) X_grad(i,k)=X_grad(i,k)+(Theta(j,:)*(X(i,:))'-Y(i,j))*Theta(j,k); end end X_grad(i,k)=X_grad(i,k)+lambda*X(i,k); end end for j=1:nu for k=1:nf for i=1:nm if(R(i,j)==1) Theta_grad(j,k)=Theta_grad(j,k)+(Theta(j,:)*(X(i,:))'-Y(i,j))*X(i,k); end end Theta_grad(j,k)=Theta_grad(j,k)+lambda*Theta(j,k); end end % ============================================================= grad = [X_grad(:); Theta_grad(:)]; end
以後只保留一層for循環,內部其他循環所有用矩陣運算代替: 一、 $$y_{temp}=(y^{(i,j_1)},\cdots,y^{(i,j_t)}),R(i,j_1),\cdots,R(i,j_t)=1$$
$$\theta^T_{temp}=(\theta^{(j_1)},\cdots,\theta^{(j_t)}),R(i,j_1),\cdots,R(i,j_t)=1$$
則有:
$$\frac {\partial J}{\partial x_k^{(i)}}=\sum_{j:R(i,j)=1}(\theta^{(j)T}x^{(i)}-y^{(i,j)})\theta_k^{(j)}+\lambda x_k^{(i)}=\sum_{j:R(i,j)=1}(x^{(i)T}\theta^{(j)}-y^{(i,j)})\theta_k^{(j)}+\lambda x_k^{(i)}$$
$$(\frac {\partial J}{\partial x_1^{(i)}},\cdots,\frac {\partial J}{\partial x_{n_f}^{(i)}})=(x^{(i)}\theta^T_{temp}-y_{temp})\theta_{temp}+\lambda x^{(i)T}$$
二、
$$y_{temp}=(y^{(i_1,j)},\cdots,y^{(i_t,j)}),R(i_1,j),\cdots,R(i_t,j)=1$$
$$X^T_{temp}=(x^{(i_1)},\cdots,x^{(i_t)}),R(i_1,j),\cdots,R(i_t,j)=1$$
$$\frac {\partial J}{\partial \theta_k^{(j)}}=\sum_{i:R(i,j)=1}(\theta^{(j)T}x^{(i)}-y^{(i,j)})x_k^{(i)}+\lambda\theta_k^{(j)}$$
$$(\frac {\partial J}{\partial \theta_1^{(j)}},\cdots,\frac {\partial J}{\partial \theta_{n_f}^{(j)}})=(\theta^{(j)T}X^T_{temp}-y_{temp})X_{temp}+\lambda \theta^{(j)T}$$
function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ... num_features, lambda) %COFICOSTFUNC Collaborative filtering cost function % [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ... % num_features, lambda) returns the cost and gradient for the % collaborative filtering problem. % % Unfold the U and W matrices from params X = reshape(params(1:num_movies*num_features), num_movies, num_features); Theta = reshape(params(num_movies*num_features+1:end), ... num_users, num_features); % You need to return the following values correctly J = 0; X_grad = zeros(size(X)); Theta_grad = zeros(size(Theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost function and gradient for collaborative % filtering. Concretely, you should first implement the cost % function (without regularization) and make sure it is % matches our costs. After that, you should implement the % gradient and use the checkCostFunction routine to check % that the gradient is correct. Finally, you should implement % regularization. % % Notes: X - num_movies x num_features matrix of movie features % Theta - num_users x num_features matrix of user features % Y - num_movies x num_users matrix of user ratings of movies % R - num_movies x num_users matrix, where R(i, j) = 1 if the % i-th movie was rated by the j-th user % % You should set the following variables correctly: % % X_grad - num_movies x num_features matrix, containing the % partial derivatives w.r.t. to each element of X % Theta_grad - num_users x num_features matrix, containing the % partial derivatives w.r.t. to each element of Theta % nm=size(Y,1); nf=size(X,2); nu=size(Y,2); J=sum(sum(((Theta*X'-Y').*R').^2))/2+... (lambda*sum(sum(Theta.^2))/2)+(lambda*sum(sum(X.^2))/2); for i=1:nm idx=find(R(i,:)==1); Theta_tmp=Theta(idx,:); Y_tmp=Y(i,idx); X_grad(i,:)=(X(i,:)*Theta_tmp'-Y_tmp)*Theta_tmp+lambda*X(i,:); end for j=1:nu idx=find(R(:,j)==1); X_tmp=X(idx,:); Y_tmp=Y(idx,j)'; Theta_grad(j,:)=(((Theta(j,:))*X_tmp')-Y_tmp)*X_tmp+lambda*Theta(j,:); end % ============================================================= grad = [X_grad(:); Theta_grad(:)]; end