龍貝格算法主要是不斷遞推和加速,直到知足精度要求算法
遞推:blog
加速:io
獲得T表:function
MATLAB代碼:class
function I = Romberg(f, a, b, epsilon) I = 0; h = b-a; k = 0; m = 0; T = zeros(5); %下標轉換:T^(k)_0 => T(k+1,1) T(1,1) = h/2 * (subs(f,a) + subs(f,b));%即T^(0)_0 delta = 2*epsilon; while delta > epsilon k = k + 1; h = h / 2; tmpSum = 0; j = a + h; while j < b tmpSum = tmpSum + subs(f, j); j = j + 2*h; end T(k+1, 1) = 0.5*T(k, 1) + h*tmpSum; j = 2; while j <= k+1 T(k+1,j) = (4^(j-1)*T(k+1,j-1) - T(k, j-1)) / (4^(j-1)-1); j = j + 1; end delta = abs(T(k+1, k+1) - T(k, k)); end I = T(k+1,k+1); T end
此代碼對於f(x)=xsin(x), 積分端點又是0和2pi時,計算出的T會全爲零,須要把外循環條件改成 delta > epsilon | sum(T) == 0循環