聲明:圖片及內容基於https://www.bilibili.com/video/av94331942ios
FIFO:先進先出數據結構
front指向頭元素的前一個位置ide
rear指向最後一個元素函數
若是用rear=front來判斷隊列爲空仍是滿,會出現歧義,其實沒法判斷spa
此時,若再插入一個元素,則rear=front。code
爲了解決這個問題,本問採起留出一個空間不用的策略。及隊列容量始終比開闢空間少一。blog
class CirQueue { private: T* data; int front; int rear; int mSize; public: CirQueue(); CirQueue(int size); ~CirQueue(); bool enQueue(T item); //入隊 bool deQueue(T &item); //出隊 bool getFront(T& item);//得到隊頭 bool isEmpty(); bool isFull(); void clearQueue(); void displayQueue(); int queueLength(); //得到隊列長度 class Out_of_range{}; //異常類 class Empty{}; //異常類 };
template<class T> CirQueue<T>::CirQueue() { front = rear = 0; mSize = QUEUESIZE; data = new T[mSize]; }
template<class T> CirQueue<T>::CirQueue(int size) { mSize = size; front = rear = 0; data = new T[mSize]; }
CirQueue<T>::~CirQueue() { delete[] data; }
而使用循環隊列能夠解決此問題,充分利用空間。隊列
bool CirQueue<T>::enQueue(T item) { if (isFull()) throw Out_of_range(); rear = (rear + 1) % mSize; //實現循環隊列 data[rear] = item; return true; }
template<class T> bool CirQueue<T>::deQueue(T& item) { if (isEmpty()) throw Empty(); front = (front + 1) % mSize; item = data[front]; return true; }
template<class T>
bool CirQueue<T>::getFront(T& item) { if (isEmpty()) throw Empty(); int i = (front + 1) % mSize; item = data[i]; return true; }
rear = front時爲空圖片
template<class T>
bool CirQueue<T>::isEmpty() { if (rear ==front) return true; return false; }
template<class T>
bool CirQueue<T>::isFull() { if ((rear + 1) % mSize == front) return true; return false; }
void CirQueue<T>::clearQueue() { front = rear = 0; }
template<class T>
void CirQueue<T>::displayQueue() { if (isEmpty()) { cout << "隊列爲空" << endl; return; } int i = (front + 1) % mSize; while (1) { //當front=head時表示下標到達最後一個元素,打印完這個元素之後再退出 cout << data[i] << " "; if (i == rear) break; i = (i + 1) % mSize; } cout << endl; }
template<class T>
int CirQueue<T>::queueLength() { int length = (rear + mSize - front) % mSize; return length; }
#include<iostream>
using namespace std; const int QUEUESIZE = 100; template <class T>
class CirQueue { private: T* data; int front; int rear; int mSize; public: CirQueue(); CirQueue(int size); ~CirQueue(); bool enQueue(T item); bool deQueue(T &item); bool getFront(T& item); bool isEmpty(); bool isFull(); void clearQueue(); void displayQueue(); int queueLength(); class Out_of_range{}; class Empty{}; }; template<class T> CirQueue<T>::CirQueue() { front = rear = 0; mSize = QUEUESIZE; data = new T[mSize]; } template<class T> CirQueue<T>::CirQueue(int size) { mSize = size; front = rear = 0; data = new T[mSize]; } template<class T> CirQueue<T>::~CirQueue() { delete[] data; } template<class T>
bool CirQueue<T>::enQueue(T item) { if (isFull()) throw Out_of_range(); rear = (rear + 1) % mSize; data[rear] = item; return true; } template<class T>
bool CirQueue<T>::deQueue(T& item) { if (isEmpty()) throw Empty(); front = (front + 1) % mSize; item = data[front]; return true; } template<class T>
bool CirQueue<T>::getFront(T& item) { if (isEmpty()) throw Empty(); int i = (front + 1) % mSize; item = data[i]; return true; } template<class T>
bool CirQueue<T>::isEmpty() { if (rear ==front) return true; return false; } template<class T>
bool CirQueue<T>::isFull() { if ((rear + 1) % mSize == front) return true; return false; } template<class T>
void CirQueue<T>::clearQueue() { front = rear = 0; } template<class T>
void CirQueue<T>::displayQueue() { if (isEmpty()) { cout << "隊列爲空" << endl; return; } int i = (front + 1) % mSize; while (1) { cout << data[i] << " "; if (i == rear) break; i = (i + 1) % mSize; } cout << endl; } template<class T>
int CirQueue<T>::queueLength() { int length = (rear + mSize - front) % mSize; return length; } int main(){ try { CirQueue<int> Queue(3); /*Queue.enQueue(1); Queue.enQueue(2);*/
//int de ; //Queue.deQueue(de); //cout << de << endl; //Queue.displayQueue(); //if (Queue.isFull()) cout << "full"; //cout << Queue.queueLength(); //Queue.clearQueue();
Queue.displayQueue(); } catch (CirQueue<int>::Out_of_range) { cout << "已經滿了" << endl; } catch (CirQueue<int>::Empty) { cout << "爲空" << endl; } return 0; }