k8s與HPA--經過 Prometheus adaptor 來自定義監控指標

k8s與HPA--經過 Prometheus adaptor 來自定義監控指標

自動擴展是一種根據資源使用狀況自動擴展或縮小工做負載的方法。 Kubernetes中的自動縮放有兩個維度:Cluster Autoscaler處理節點擴展操做,Horizo​​ntal Pod Autoscaler自動擴展部署或副本集中的pod數量。 Cluster Autoscaling與Horizo​​ntal Pod Autoscaler一塊兒用於動態調整計算能力以及系統知足SLA所需的並行度。雖然Cluster Autoscaler高度依賴託管您的集羣的雲提供商的基礎功能,但HPA能夠獨立於您的IaaS / PaaS提供商運營。php

Horizo​​ntal Pod Autoscaler功能最初是在Kubernetes v1.1中引入的,而且從那時起已經發展了不少。 HPA縮放容器的版本1基於觀察到的CPU利用率,後來基於內存使用狀況。在Kubernetes 1.6中,引入了一個新的API Custom Metrics API,使HPA可以訪問任意指標。 Kubernetes 1.7引入了聚合層,容許第三方應用程序經過將本身註冊爲API附加組件來擴展Kubernetes API。 Custom Metrics API和聚合層使Prometheus等監控系統能夠向HPA控制器公開特定於應用程序的指標。node

Horizo​​ntal Pod Autoscaler實現爲一個控制循環,按期查詢Resource Metrics API以獲取CPU /內存等核心指標和針對特定應用程序指標的Custom Metrics API。git

k8s-hpa

如下是爲Kubernetes 1.9或更高版本配置HPA v2的分步指南。您將安裝提供核心指標的Metrics Server附加組件,而後您將使用演示應用程序根據CPU和內存使用狀況展現pod自動擴展。在本指南的第二部分中,您將部署Prometheus和自定義API服務器。您將使用聚合器層註冊自定義API服務器,而後使用演示應用程序提供的自定義指標配置HPA。github

在開始以前,您須要安裝Go 1.8或更高版本並在GOPATH中克隆k8s-prom-hpa repo。數據庫

cd $GOPATH
git clone https://github.com/stefanprodan/k8s-prom-hpa

部署 Metrics Server

kubernetes Metrics Server是資源使用數據的集羣範圍聚合器,是Heapster的後繼者。度量服務器經過聚集來自kubernetes.summary_api的數據來收集節點和pod的CPU和內存使用狀況。摘要API是一種內存高效的API,用於將數據從Kubelet / cAdvisor傳遞到度量服務器。apache

k8s-hpa-ms

在HPA的第一個版本中,您須要Heapster來提供CPU和內存指標,在HPA v2和Kubernetes 1.8中,只有在啓用horizo​​ntal-pod-autoscaler-use-rest-clients時才須要指標服務器。默認狀況下,Kubernetes 1.9中啓用了HPA rest客戶端。 GKE 1.9附帶預安裝的Metrics Server。json

在kube-system命名空間中部署Metrics Server:後端

kubectl create -f ./metrics-server

一分鐘後,度量服務器開始報告節點和pod的CPU和內存使用狀況。api

查看nodes metrics:bash

kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" | jq .

結果以下:

{
  "kind": "NodeMetricsList",
  "apiVersion": "metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes"
  },
  "items": [
    {
      "metadata": {
        "name": "ip-10-1-50-61.ec2.internal",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-50-61.ec2.internal",
        "creationTimestamp": "2019-02-13T08:34:05Z"
      },
      "timestamp": "2019-02-13T08:33:38Z",
      "window": "30s",
      "usage": {
        "cpu": "78322168n",
        "memory": "563180Ki"
      }
    },
    {
      "metadata": {
        "name": "ip-10-1-57-40.ec2.internal",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-57-40.ec2.internal",
        "creationTimestamp": "2019-02-13T08:34:05Z"
      },
      "timestamp": "2019-02-13T08:33:42Z",
      "window": "30s",
      "usage": {
        "cpu": "48926263n",
        "memory": "554472Ki"
      }
    },
    {
      "metadata": {
        "name": "ip-10-1-62-29.ec2.internal",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/ip-10-1-62-29.ec2.internal",
        "creationTimestamp": "2019-02-13T08:34:05Z"
      },
      "timestamp": "2019-02-13T08:33:36Z",
      "window": "30s",
      "usage": {
        "cpu": "36700681n",
        "memory": "326088Ki"
      }
    }
  ]
}

查看pods metrics:

kubectl get --raw "/apis/metrics.k8s.io/v1beta1/pods" | jq .

結果以下:

{
  "kind": "PodMetricsList",
  "apiVersion": "metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/metrics.k8s.io/v1beta1/pods"
  },
  "items": [
    {
      "metadata": {
        "name": "kube-proxy-77nt2",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-77nt2",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:00Z",
      "window": "30s",
      "containers": [
        {
          "name": "kube-proxy",
          "usage": {
            "cpu": "2370555n",
            "memory": "13184Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "cluster-autoscaler-n2xsl",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/cluster-autoscaler-n2xsl",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:12Z",
      "window": "30s",
      "containers": [
        {
          "name": "cluster-autoscaler",
          "usage": {
            "cpu": "1477997n",
            "memory": "54584Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "core-dns-autoscaler-b4785d4d7-j64xd",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/core-dns-autoscaler-b4785d4d7-j64xd",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:08Z",
      "window": "30s",
      "containers": [
        {
          "name": "autoscaler",
          "usage": {
            "cpu": "191293n",
            "memory": "7956Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "spot-interrupt-handler-8t2xk",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/spot-interrupt-handler-8t2xk",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:04Z",
      "window": "30s",
      "containers": [
        {
          "name": "spot-interrupt-handler",
          "usage": {
            "cpu": "844907n",
            "memory": "4608Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "kube-proxy-t5kqm",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-t5kqm",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:08Z",
      "window": "30s",
      "containers": [
        {
          "name": "kube-proxy",
          "usage": {
            "cpu": "1194766n",
            "memory": "12204Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "kube-proxy-zxmqb",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube-proxy-zxmqb",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:06Z",
      "window": "30s",
      "containers": [
        {
          "name": "kube-proxy",
          "usage": {
            "cpu": "3021117n",
            "memory": "13628Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "aws-node-rcz5c",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-rcz5c",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:15Z",
      "window": "30s",
      "containers": [
        {
          "name": "aws-node",
          "usage": {
            "cpu": "1217989n",
            "memory": "24976Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "aws-node-z2qxs",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-z2qxs",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:15Z",
      "window": "30s",
      "containers": [
        {
          "name": "aws-node",
          "usage": {
            "cpu": "1025780n",
            "memory": "46424Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "php-apache-899d75b96-8ppk4",
        "namespace": "default",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/php-apache-899d75b96-8ppk4",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:08Z",
      "window": "30s",
      "containers": [
        {
          "name": "php-apache",
          "usage": {
            "cpu": "24612n",
            "memory": "27556Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "load-generator-779c5f458c-9sglg",
        "namespace": "default",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/default/pods/load-generator-779c5f458c-9sglg",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:34:56Z",
      "window": "30s",
      "containers": [
        {
          "name": "load-generator",
          "usage": {
            "cpu": "0",
            "memory": "336Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "aws-node-v9jxs",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/aws-node-v9jxs",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:00Z",
      "window": "30s",
      "containers": [
        {
          "name": "aws-node",
          "usage": {
            "cpu": "1303458n",
            "memory": "28020Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "kube2iam-m2ktt",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-m2ktt",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:11Z",
      "window": "30s",
      "containers": [
        {
          "name": "kube2iam",
          "usage": {
            "cpu": "1328864n",
            "memory": "9724Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "kube2iam-w9cqf",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-w9cqf",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:03Z",
      "window": "30s",
      "containers": [
        {
          "name": "kube2iam",
          "usage": {
            "cpu": "1294379n",
            "memory": "8812Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "custom-metrics-apiserver-657644489c-pk8rb",
        "namespace": "monitoring",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/monitoring/pods/custom-metrics-apiserver-657644489c-pk8rb",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:04Z",
      "window": "30s",
      "containers": [
        {
          "name": "custom-metrics-apiserver",
          "usage": {
            "cpu": "22409370n",
            "memory": "42468Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "kube2iam-qghgt",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/kube2iam-qghgt",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:11Z",
      "window": "30s",
      "containers": [
        {
          "name": "kube2iam",
          "usage": {
            "cpu": "2078992n",
            "memory": "16356Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "spot-interrupt-handler-ps745",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/spot-interrupt-handler-ps745",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:10Z",
      "window": "30s",
      "containers": [
        {
          "name": "spot-interrupt-handler",
          "usage": {
            "cpu": "611566n",
            "memory": "4336Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "coredns-68fb7946fb-2xnpp",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/coredns-68fb7946fb-2xnpp",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:12Z",
      "window": "30s",
      "containers": [
        {
          "name": "coredns",
          "usage": {
            "cpu": "1610381n",
            "memory": "10480Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "coredns-68fb7946fb-9ctjf",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/coredns-68fb7946fb-9ctjf",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:13Z",
      "window": "30s",
      "containers": [
        {
          "name": "coredns",
          "usage": {
            "cpu": "1418850n",
            "memory": "9852Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "prometheus-7d4f6d4454-v4fnd",
        "namespace": "monitoring",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/monitoring/pods/prometheus-7d4f6d4454-v4fnd",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:00Z",
      "window": "30s",
      "containers": [
        {
          "name": "prometheus",
          "usage": {
            "cpu": "17951807n",
            "memory": "202316Ki"
          }
        }
      ]
    },
    {
      "metadata": {
        "name": "metrics-server-7cdd54ccb4-k2x7m",
        "namespace": "kube-system",
        "selfLink": "/apis/metrics.k8s.io/v1beta1/namespaces/kube-system/pods/metrics-server-7cdd54ccb4-k2x7m",
        "creationTimestamp": "2019-02-13T08:35:19Z"
      },
      "timestamp": "2019-02-13T08:35:04Z",
      "window": "30s",
      "containers": [
        {
          "name": "metrics-server-nanny",
          "usage": {
            "cpu": "144656n",
            "memory": "5716Ki"
          }
        },
        {
          "name": "metrics-server",
          "usage": {
            "cpu": "568327n",
            "memory": "16268Ki"
          }
        }
      ]
    }
  ]
}

基於CPU和內存使用狀況的Auto Scaling

您將使用基於Golang的小型Web應用程序來測試Horizo​​ntal Pod Autoscaler(HPA)。

將podinfo部署到默認命名空間:

kubectl create -f ./podinfo/podinfo-svc.yaml,./podinfo/podinfo-dep.yaml

使用NodePort服務訪問podinfo,地址爲http:// <K8S_PUBLIC_IP>:31198。

接下來定義一個至少維護兩個副本的HPA,若是CPU平均值超過80%或內存超過200Mi,則最多可擴展到10個:

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
  name: podinfo
spec:
  scaleTargetRef:
    apiVersion: extensions/v1beta1
    kind: Deployment
    name: podinfo
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      targetAverageUtilization: 80
  - type: Resource
    resource:
      name: memory
      targetAverageValue: 200Mi

建立這個hpa:

kubectl create -f ./podinfo/podinfo-hpa.yaml

幾秒鐘後,HPA控制器聯繫度量服務器,而後獲取CPU和內存使用狀況:

kubectl get hpa

NAME      REFERENCE            TARGETS                      MINPODS   MAXPODS   REPLICAS   AGE
podinfo   Deployment/podinfo   2826240 / 200Mi, 15% / 80%   2         10        2          5m

爲了增長CPU使用率,請使用rakyll / hey運行負載測試:

#install hey
go get -u github.com/rakyll/hey

#do 10K requests
hey -n 10000 -q 10 -c 5 http://<K8S_PUBLIC_IP>:31198/

您可使用如下方式監控HPA事件:

$ kubectl describe hpa

Events:
  Type    Reason             Age   From                       Message
  ----    ------             ----  ----                       -------
  Normal  SuccessfulRescale  7m    horizontal-pod-autoscaler  New size: 4; reason: cpu resource utilization (percentage of request) above target
  Normal  SuccessfulRescale  3m    horizontal-pod-autoscaler  New size: 8; reason: cpu resource utilization (percentage of request) above target

暫時刪除podinfo。稍後將在本教程中再次部署它:

kubectl delete -f ./podinfo/podinfo-hpa.yaml,./podinfo/podinfo-dep.yaml,./podinfo/podinfo-svc.yaml

部署 Custom Metrics Server

要根據自定義指標進行擴展,您須要擁有兩個組件。一個組件,用於從應用程序收集指標並將其存儲在Prometheus時間序列數據庫中。第二個組件使用collect(k8s-prometheus-adapter)提供的指標擴展了Kubernetes自定義指標API。

k8s-hpa-prom

您將在專用命名空間中部署Prometheus和適配器。

建立monitoring命名空間:

kubectl create -f ./namespaces.yaml

monitoring命名空間中部署Prometheus v2:

kubectl create -f ./prometheus

生成Prometheus適配器所需的TLS證書:

make certs

生成如下幾個文件:

# ls output
apiserver.csr  apiserver-key.pem  apiserver.pem

部署Prometheus自定義指標API適配器:

kubectl create -f ./custom-metrics-api

列出Prometheus提供的自定義指標:

kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1" | jq .

獲取monitoring命名空間中全部pod的FS使用狀況:

kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitoring/pods/*/fs_usage_bytes" | jq .

查詢結果以下:

{
  "kind": "MetricValueList",
  "apiVersion": "custom.metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/monitoring/pods/%2A/fs_usage_bytes"
  },
  "items": [
    {
      "describedObject": {
        "kind": "Pod",
        "namespace": "monitoring",
        "name": "custom-metrics-apiserver-657644489c-pk8rb",
        "apiVersion": "/v1"
      },
      "metricName": "fs_usage_bytes",
      "timestamp": "2019-02-13T08:52:30Z",
      "value": "94253056"
    },
    {
      "describedObject": {
        "kind": "Pod",
        "namespace": "monitoring",
        "name": "prometheus-7d4f6d4454-v4fnd",
        "apiVersion": "/v1"
      },
      "metricName": "fs_usage_bytes",
      "timestamp": "2019-02-13T08:52:30Z",
      "value": "24576"
    }
  ]
}

基於custom metrics 自動伸縮

在默認命名空間中建立podinfo NodePort服務和部署:

kubectl create -f ./podinfo/podinfo-svc.yaml,./podinfo/podinfo-dep.yaml

podinfo應用程序公開名爲http_requests_total的自定義指標。 Prometheus適配器刪除_total後綴並將度量標記爲計數器度量標準。

從自定義指標API獲取每秒的總請求數:

kubectl get --raw "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/*/http_requests" | jq .
{
  "kind": "MetricValueList",
  "apiVersion": "custom.metrics.k8s.io/v1beta1",
  "metadata": {
    "selfLink": "/apis/custom.metrics.k8s.io/v1beta1/namespaces/default/pods/%2A/http_requests"
  },
  "items": [
    {
      "describedObject": {
        "kind": "Pod",
        "namespace": "default",
        "name": "podinfo-6b86c8ccc9-kv5g9",
        "apiVersion": "/__internal"
      },
      "metricName": "http_requests",
      "timestamp": "2018-01-10T16:49:07Z",
      "value": "901m"
    },
    {
      "describedObject": {
        "kind": "Pod",
        "namespace": "default",
        "name": "podinfo-6b86c8ccc9-nm7bl",
        "apiVersion": "/__internal"
      },
      "metricName": "http_requests",
      "timestamp": "2018-01-10T16:49:07Z",
      "value": "898m"
    }
  ]
}

建一個HPA,若是請求數超過每秒10個,將擴展podinfo部署:

apiVersion: autoscaling/v2beta1
kind: HorizontalPodAutoscaler
metadata:
  name: podinfo
spec:
  scaleTargetRef:
    apiVersion: extensions/v1beta1
    kind: Deployment
    name: podinfo
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Pods
    pods:
      metricName: http_requests
      targetAverageValue: 10

在默認命名空間中部署podinfo HPA:

kubectl create -f ./podinfo/podinfo-hpa-custom.yaml

幾秒鐘後,HPA從指標API獲取http_requests值:

kubectl get hpa

NAME      REFERENCE            TARGETS     MINPODS   MAXPODS   REPLICAS   AGE
podinfo   Deployment/podinfo   899m / 10   2         10        2          1m

在podinfo服務上應用一些負載,每秒25個請求:

#install hey
go get -u github.com/rakyll/hey

#do 10K requests rate limited at 25 QPS
hey -n 10000 -q 5 -c 5 http://<K8S-IP>:31198/healthz

幾分鐘後,HPA開始擴展部署:

kubectl describe hpa

Name:                       podinfo
Namespace:                  default
Reference:                  Deployment/podinfo
Metrics:                    ( current / target )
  "http_requests" on pods:  9059m / 10
Min replicas:               2
Max replicas:               10

Events:
  Type    Reason             Age   From                       Message
  ----    ------             ----  ----                       -------
  Normal  SuccessfulRescale  2m    horizontal-pod-autoscaler  New size: 3; reason: pods metric http_requests above target

按照當前的每秒請求速率,部署永遠不會達到10個pod的最大值。三個複製品足以使每一個吊艙的RPS保持在10如下。

負載測試完成後,HPA會將部署縮到其初始副本:

Events:
  Type    Reason             Age   From                       Message
  ----    ------             ----  ----                       -------
  Normal  SuccessfulRescale  5m    horizontal-pod-autoscaler  New size: 3; reason: pods metric http_requests above target
  Normal  SuccessfulRescale  21s   horizontal-pod-autoscaler  New size: 2; reason: All metrics below target

您可能已經注意到自動縮放器不會當即對使用峯值作出反應。默認狀況下,度量標準同步每30秒發生一次,只有在最後3-5分鐘內沒有從新縮放時才能進行擴展/縮小。經過這種方式,HPA能夠防止快速執行衝突的決策,併爲Cluster Autoscaler提供時間。

結論

並不是全部系統均可以經過單獨依賴CPU /內存使用指標來知足其SLA,大多數Web和移動後端須要基於每秒請求進行自動擴展以處理任何流量突發。對於ETL應用程序,能夠經過做業隊列長度超過某個閾值等來觸發自動縮放。經過使用Prometheus檢測應用程序並公開正確的自動縮放指標,您能夠對應用程序進行微調,以更好地處理突發並確保高可用性。

相關文章
相關標籤/搜索