數據分析之KNN數字識別手寫

import numpy as np
# bmp 圖片後綴
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.neighbors import KNeighborsClassifier

  提煉樣本數據數組

img_arr = plt.imread('./data/3/3_100.bmp')
plt.imshow(img_arr)

  讀出全部的數據app

feature = []
target = []
for i in range(0,10):
    for j in range(1,501):
        img_path = './data/'+str(i)+'/'+str(i)+'_'+str(j+1)+'.bmp'
        img_arr = plt.imread(img_path)
        feature.append(img_arr)
        target.append(i)

  樣本數據的提取dom

feature = np.array(featrue)
target = np.array(target)
feature.shape

target.shape
#feature是一個三維數組(執行將維操做)
feature = feature.reshape(5000,28*28)

feature.shape

  將樣本數據打亂測試

np.random.seed(3)
np.random.shuffle(feature)
np.random.seed(3)
np.random.shuffle(target)

  獲取訓練數據和測試數據spa

x_train = feature[:4950]
y_train = target[:4950]
x_test = feature[-50:]
y_test = target[-50:]

  實例化模型對象,訓練code

knn = KNeighborsClassifier(n_neighbors=30)
knn.fit(x_train,y_train)
knn.score(x_train,y_train)

  

print('預測分類:',knn.predict(x_test))
print('真實數據:',y_test)

  模型的保存對象

from sklearn.externals import joblib

joblib.dump(knn,"./knn.m"

  讀取模型blog

knn = joblib.load("./knn.m")

  讓模型進行外部圖片的識別圖片

img_arr = plt.imread('./數字.jpg')
plt.imshow(img_arr)

  利用切片取值ip

five_arr = img_arr[95:150,85:1305]
plt.imshow(new_arr)

 

#five數組是三維的,須要進行降維,捨棄第三個表示顏色的維度
five_arr = five_arr.mean(axis=2)
five_arr.shape

 

import scipy.ndimage as ndimage
five = ndimage.zoom(five_arr,zoom = (28/65,28/55))
knn.predict(five.reshape(1,784))
相關文章
相關標籤/搜索