https://www.kaggle.com/kakauandme/tensorflow-deep-nngit
本人只是負責將這個kernels的代碼整理了一遍,具體仍是請看原連接session
import numpy as np import pandas as pd import tensorflow # settings LEARNING_RATE = 1e-4 # set to 20000 on local environment to get 0.99 accuracy TRAINING_ITERATIONS = 20000 DROPOUT = 0.5 BATCH_SIZE = 50 # set to 0 to train on all available data VALIDATION_SIZE = 2000 # image number to output IMAGE_TO_DISPLAY = 10 # read training data from CSV file data = pd.read_csv('D://kaggle//DigitRecognizer//data//train.csv') images = data.iloc[:,1:].values images = images.astype(np.float) # convert from [0:255] => [0.0:1.0] images = np.multiply(images, 1.0 / 255.0) image_size = images.shape[1] print ('image_size => {0}'.format(image_size)) # in this case all images are square image_width = image_height = np.ceil(np.sqrt(image_size)).astype(np.uint8) print ('image_width => {0}\nimage_height => {1}'.format(image_width,image_height)) labels_flat = data.iloc[:,0].values print('labels_flat({0})'.format(len(labels_flat))) print ('labels_flat[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels_flat[IMAGE_TO_DISPLAY])) labels_count = np.unique(labels_flat).shape[0] print('labels_count => {0}'.format(labels_count)) def dense_to_one_hot(labels_dense, num_classes): num_labels = labels_dense.shape[0] index_offset = np.arange(num_labels) * num_classes labels_one_hot = np.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot labels = dense_to_one_hot(labels_flat, labels_count) labels = labels.astype(np.uint8) print('labels({0[0]},{0[1]})'.format(labels.shape)) print ('labels[{0}] => {1}'.format(IMAGE_TO_DISPLAY,labels[IMAGE_TO_DISPLAY])) # split data into training & validation validation_images = images[:VALIDATION_SIZE] validation_labels = labels[:VALIDATION_SIZE] train_images = images[VALIDATION_SIZE:] train_labels = labels[VALIDATION_SIZE:] print('train_images({0[0]},{0[1]})'.format(train_images.shape)) print('validation_images({0[0]},{0[1]})'.format(validation_images.shape)) # weight initialization def weight_variable(shape): initial = tensorflow.truncated_normal(shape, stddev=0.1) return tensorflow.Variable(initial) def bias_variable(shape): initial = tensorflow.constant(0.1, shape=shape) return tensorflow.Variable(initial) # convolution def conv2d(x, W): return tensorflow.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') # pooling # [[0,3], # [4,2]] => 4 # [[0,1], # [1,1]] => 1 def max_pool_2x2(x): return tensorflow.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # input & output of NN # images x = tensorflow.placeholder('float', shape=[None, image_size]) # labels y_ = tensorflow.placeholder('float', shape=[None, labels_count]) # first convolutional layer W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) # (40000,784) => (40000,28,28,1) image = tensorflow.reshape(x, [-1,image_width , image_height,1]) #print (image.get_shape()) # =>(40000,28,28,1) h_conv1 = tensorflow.nn.relu(conv2d(image, W_conv1) + b_conv1) #print (h_conv1.get_shape()) # => (40000, 28, 28, 32) h_pool1 = max_pool_2x2(h_conv1) #print (h_pool1.get_shape()) # => (40000, 14, 14, 32) # Prepare for visualization # display 32 fetures in 4 by 8 grid layer1 = tensorflow.reshape(h_conv1, (-1, image_height, image_width, 4 ,8)) # reorder so the channels are in the first dimension, x and y follow. layer1 = tensorflow.transpose(layer1, (0, 3, 1, 4,2)) layer1 = tensorflow.reshape(layer1, (-1, image_height*4, image_width*8)) # second convolutional layer W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tensorflow.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #print (h_conv2.get_shape()) # => (40000, 14,14, 64) h_pool2 = max_pool_2x2(h_conv2) #print (h_pool2.get_shape()) # => (40000, 7, 7, 64) # Prepare for visualization # display 64 fetures in 4 by 16 grid layer2 = tensorflow.reshape(h_conv2, (-1, 14, 14, 4 ,16)) # reorder so the channels are in the first dimension, x and y follow. layer2 = tensorflow.transpose(layer2, (0, 3, 1, 4,2)) layer2 = tensorflow.reshape(layer2, (-1, 14*4, 14*16)) # densely connected layer W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) # (40000, 7, 7, 64) => (40000, 3136) h_pool2_flat = tensorflow.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tensorflow.nn.relu(tensorflow.matmul(h_pool2_flat, W_fc1) + b_fc1) #print (h_fc1.get_shape()) # => (40000, 1024) # dropout keep_prob = tensorflow.placeholder('float') h_fc1_drop = tensorflow.nn.dropout(h_fc1, keep_prob) # readout layer for deep net W_fc2 = weight_variable([1024, labels_count]) b_fc2 = bias_variable([labels_count]) y = tensorflow.nn.softmax(tensorflow.matmul(h_fc1_drop, W_fc2) + b_fc2) #print (y.get_shape()) # => (40000, 10) # cost function cross_entropy = -tensorflow.reduce_sum(y_*tensorflow.log(y)) # optimisation function train_step = tensorflow.train.AdamOptimizer(LEARNING_RATE).minimize(cross_entropy) # evaluation correct_prediction = tensorflow.equal(tensorflow.argmax(y,1),tensorflow.argmax(y_,1)) accuracy = tensorflow.reduce_mean(tensorflow.cast(correct_prediction, 'float')) # prediction function #[0.1, 0.9, 0.2, 0.1, 0.1 0.3, 0.5, 0.1, 0.2, 0.3] => 1 predict = tensorflow.argmax(y,1) epochs_completed = 0 index_in_epoch = 0 num_examples = train_images.shape[0] # serve data by batches def next_batch(batch_size): global train_images global train_labels global index_in_epoch global epochs_completed start = index_in_epoch index_in_epoch += batch_size # when all trainig data have been already used, it is reorder randomly if index_in_epoch > num_examples: # finished epoch epochs_completed += 1 # shuffle the data perm = np.arange(num_examples) np.random.shuffle(perm) train_images = train_images[perm] train_labels = train_labels[perm] # start next epoch start = 0 index_in_epoch = batch_size assert batch_size <= num_examples end = index_in_epoch return train_images[start:end], train_labels[start:end] # start TensorFlow session init = tensorflow.initialize_all_variables() sess = tensorflow.InteractiveSession() sess.run(init) # visualisation variables train_accuracies = [] validation_accuracies = [] x_range = [] display_step=1 for i in range(TRAINING_ITERATIONS): #get new batch batch_xs, batch_ys = next_batch(BATCH_SIZE) # check progress on every 1st,2nd,...,10th,20th,...,100th... step if i%display_step == 0 or (i+1) == TRAINING_ITERATIONS: train_accuracy = accuracy.eval(feed_dict={x:batch_xs, y_: batch_ys, keep_prob: 1.0}) if(VALIDATION_SIZE): validation_accuracy = accuracy.eval(feed_dict={ x: validation_images[0:BATCH_SIZE], y_: validation_labels[0:BATCH_SIZE], keep_prob: 1.0}) print('training_accuracy / validation_accuracy => %.2f / %.2f for step %d'%(train_accuracy, validation_accuracy, i)) validation_accuracies.append(validation_accuracy) else: print('training_accuracy => %.4f for step %d'%(train_accuracy, i)) train_accuracies.append(train_accuracy) x_range.append(i) # increase display_step if i%(display_step*10) == 0 and i: display_step *= 10 # train on batch sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys, keep_prob: DROPOUT}) # read test data from CSV file test_images = pd.read_csv('D://kaggle//DigitRecognizer//data//test.csv').values test_images = test_images.astype(np.float) # convert from [0:255] => [0.0:1.0] test_images = np.multiply(test_images, 1.0 / 255.0) print('test_images({0[0]},{0[1]})'.format(test_images.shape)) # predict test set #predicted_lables = predict.eval(feed_dict={x: test_images, keep_prob: 1.0}) # using batches is more resource efficient predicted_lables = np.zeros(test_images.shape[0]) for i in range(0,test_images.shape[0]//BATCH_SIZE): predicted_lables[i*BATCH_SIZE : (i+1)*BATCH_SIZE] = predict.eval(feed_dict={x: test_images[i*BATCH_SIZE : (i+1)*BATCH_SIZE], keep_prob: 1.0}) print('predicted_lables({0})'.format(len(predicted_lables))) # output test image and prediction # display(test_images[IMAGE_TO_DISPLAY]) print ('predicted_lables[{0}] => {1}'.format(IMAGE_TO_DISPLAY,predicted_lables[IMAGE_TO_DISPLAY])) # save results np.savetxt('D://kaggle//DigitRecognizer//submission_softmax.csv', np.c_[range(1,len(test_images)+1),predicted_lables], delimiter=',', header = 'ImageId,Label', comments = '', fmt='%d') layer1_grid = layer1.eval(feed_dict={x: test_images[IMAGE_TO_DISPLAY:IMAGE_TO_DISPLAY+1], keep_prob: 1.0}) sess.close()