Noip2016Day2T3 憤怒的小鳥

題目連接ios

problem

平面內有n個點,每次能夠肯定一條過原點且開口向上的拋物線,將這條拋物線上全部的點都刪去。問最少須要刪幾回能夠刪掉所有的點。spa

solution

n比較小,直接狀壓一下。由於已經肯定了要過原點。因此每兩個點均可以肯定一條拋物線。預處理出全部拋物線以及每條拋物線能夠刪掉的點。code

而後記憶化搜索,枚舉每次選擇的拋物線。轉移便可。get

注意精度!string

肯定拋物線的方法就用解二元一次方程組的方法便可。具體以下:io

設拋物線的二次項係數爲\(a\),一次項係數爲\(b\) ,兩個點的座標分別爲\((x_i,y_i),(x_j,y_j)\)class

\(k_1=x_i^2,k_2=x_i,k_3=y_i,k_4=x_j^2,k_5=x_j,k_6=y_j\)stream

而後就是解方程組搜索

\[\left\{ \begin{aligned} k_1a+k_2b=k_3& &(1)\\ k_4a+k_5b=k_6& &(2) \end{aligned} \right. \]queue

\((1)\)\(b=\frac{k_3-k_1a}{k_2}\),代回\((2)\)\(a=\frac{k_2k_6-k_3k_5}{k_2k_4-k_1k_5}\)

code

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<queue>
#include<vector>
#include<cstring>
using namespace std;
typedef long long ll;
const double eps = 1e-9;
ll read() {
    ll x = 0,f = 1;char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-') f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = x * 10 + c - '0';
        c = getchar();
    }
    return x * f;
}
int tot;
bool calc(double a,double b,double x,double y) {
    return fabs(a * x * x + b * x - y) <= eps;
}
double x[20],y[20],a[400],b[400];
int sol[400];
int n,m,f[1 << 20];
int dfs(int now) {
    if(!now) return f[now] = 0;
    if(f[now] != -1) return f[now];
    int ret = 100000;
    for(int i = 1;i <= tot;++i) {
        int t = now & sol[i];
        if(t != now) ret = min(ret,dfs(t) + 1);
    }
    return f[now] = ret;
}
int main() {
    int T = read();
    while(T--) {
        tot = 0;
        memset(f,-1,sizeof(f));
        n = read(),m = read();
        for(int i = 1;i <= n;++i) scanf("%lf%lf",&x[i],&y[i]);
        
        for(int i = 1;i <= n;++i) {
            for(int j = i + 1;j <= n;++j) {
                if(fabs(x[i] - x[j]) <= eps) continue;
                ++tot;
                double k1 = x[i] * x[i],k2 = x[i],k3 = y[i],k4 = x[j] * x[j],k5 = x[j],k6 = y[j];
                a[tot] = ((k6 * k2 - k3 * k5)) / ((k4 * k2 - k1 * k5));
                b[tot] = (k3 - k1 * a[tot]) / k2;
                if(a[tot] >= 0) --tot;
            }
        }
        
        
        for(int i = 1;i <= tot;++i) {
            
            sol[i] = (1 << n) - 1;
            
            for(int j = 1;j <= n;++j) 
                if(calc(a[i],b[i],x[j],y[j])) sol[i] ^= (1 << (j - 1)); 
        }
        
        for(int i = 1;i <= n;++i) {
            ++tot;
            sol[tot] = ((1 << n) - 1) ^ (1 << (i - 1));
        }
        
        printf("%d\n",dfs((1 << n) - 1));
    }
    
    return 0;
}
相關文章
相關標籤/搜索