下邊分析HashMap的插入操做。java
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;//table的初始容量
數組
static final int MAXIMUM_CAPACITY = 1 << 30//最大容量;
bash
static final float DEFAULT_LOAD_FACTOR = 0.75f;//默認的因子,在計算閾值時用,爲何爲0.75?
app
static final int TREEIFY_THRESHOLD = 8;//超過這個值後table結構由鏈表變爲紅黑樹
函數
static final int UNTREEIFY_THRESHOLD = 6;//小於這個值table結構由紅黑樹變爲鏈表
ui
static final int MIN_TREEIFY_CAPACITY = 64;//若是鍵對值小於,這個值,則不進行變換紅黑值操做
對於上邊的一些思考在文末this
//put()函數的分析,內部調用了putVal,咱們對putval進行分析
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//table爲null,或則length=0;進行初始化操做,resize函數具體分析在下面
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//若是插入的位置爲null,則直接插入
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//插入的位置不爲null
else {
Node<K,V> e; K k;
//插入數組中的位置的值恰好等於插入的值
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//插入的位置紅黑樹結構
else if (p instanceof TreeNode)
//putTreeVal()實際爲紅黑樹的插入操做,具體見另外一個單獨的blog,紅黑樹的插入分析
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//插入的節點爲鏈表結構,不斷前後找到插入的節點
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
//大於>TREEIFY_THRESHOLD-1時,將鏈表節點轉爲treeNode,TREEIFY_THRESHOLD=8;
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//若是找到插入的節點位置,返回插入的節點
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//成功插入以後進行resize操做,,判斷是否超出容量
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
複製代碼
在resize()中進行table容量大小的調整,以及將舊table的值轉移到新table的相關操做spa
//hashmap的resize函數,每次插入時都要調用,調整hashmap的大小
final Node<K,V>[] resize() {
//old 舊hashmap的容量大小
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//threshold 閾值 超過這個容量後就會進行擴容
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
//當舊的容量>=最大容量時,threshold爲最大容量
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
//設置新的容量爲舊的容量的2倍,同時 newthr=2*oldThr
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//若是舊的容量爲0,且舊的閾值大於0,則新的容量爲舊的閾值
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//若是舊容量爲0,就閾值<=0;新容量=默認大小,通常爲16,1<<4;
//新的閾值 newThr=defult_factor(通常爲0.75)*DEFAULT_INITIAL_CAPACITY(16) = 12;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//這個狀況對應於 oldThr>0&&oldCap<=0;
if (newThr == 0) {
//此時 newCap=16;
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//設置map的閾值爲新的值;
threshold = newThr;
//上邊的過程即爲調整新容量,新閾值的過程,下邊爲調整舊table到新table;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
//逐個調整oldTable中的值到新table
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
//賦值爲null,方便gc;
oldTab[j] = null;
//若是數組中的節點,沒有後繼節點,直接賦值給新table
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//若是節點爲樹節點(紅黑樹),且這個節點還有後繼節點
else if (e instanceof TreeNode)
//拆分這個紅黑樹,分爲兩部分,一部分在新table的索引爲原table的索引,一部分爲原索引+oldCap
//具體分析看split()函數的分析
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//若是節點爲普通的鏈表節點,在以下操做中也要將鏈表分爲兩個鏈表
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
複製代碼
見名知意,將一個鏈表或一個RBTree,分爲兩個鏈表。code
//split函數,將一條鏈表分解爲兩條鏈表,或將一個紅黑樹分爲兩個鏈表
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
//這連個變量表示兩條鏈表的長度
int lc = 0, hc = 0;
//遍歷整條鏈表
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
//e.hash&bit(oldcap)==0的節點的索引爲原索引,具體分析見下邊 e.hash&bit的分析
if ((e.hash & bit) == 0) {
//就是不斷添加節點,組成鏈表的過程
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
//實際對應的狀況爲 e.hash&bit==1的節點對應的索引爲oldcap+原索引
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
//通過以上操做就有兩條鏈表,節點索引爲原索引的鏈表頭節點爲:loHead
// 節點索引爲原索引+oldcap的鏈表頭節點爲:hiHead;
if (loHead != null) {
//判斷鏈表長度,若是<=UNTREEIFY_THRESHOLD則爲鏈表結構
if (lc <= UNTREEIFY_THRESHOLD)
//untreeify內部進行了一個將普通鏈表轉爲treemap的鏈表的封裝
tab[index] = loHead.untreeify(map);
//判斷鏈表的長度,若是超過UNTREEIFY_THRESHOLD,爲8,則將鏈表結構轉爲紅黑樹
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
//treeiFied函數實際爲紅黑樹的插入函數,具體分析看紅黑樹的插入blog
loHead.treeify(tab);
}
}
//如上
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
複製代碼
1.對e.hash&oldCap的分析
假設 oldCap =16,二進制爲 00**010000
咱們知道hashmap計算索引時,是(length-1)&hash值
對應原索引,爲 00**01111&hash,實際是對hash取後四位,設後四位爲abcd
對應新table,容量爲2*oldCap,對應二進制位 00**0100000,計算hash時爲 00*011111&hash,實際是取hash的後5位
則有兩種狀況 0abcd 對應的索引爲原索引
1abcd 對應的索引爲原索引+oldCap,
怎麼判斷這兩種狀況?
咱們看到這兩種狀況最高位分別爲0,1,咱們用oldCap&hash,便可得出0,1兩個結果,0對應原索引,1對應新索引
2.爲何factor=0.75;
在理想狀況下,使用隨機哈希碼,節點出現的頻率在hash桶中遵循泊松分佈
當桶中元素到達8個的時候,機率已經變得很是小,也就是說用0.75做爲加載因子,每一個碰撞位置的鏈表長度超過8個是幾乎不可能的。
3.爲何找索引時用 hash(key)&(length-1)
由於hash(key)的值是隨機的,經過&操做,至關於對hash取模,能保證索引相對均勻分佈
複製代碼