0、概述數組
本文針對jdk1.8版本對HashMap源碼進行分析。app
HashMap經過Node數據的形式存儲每一組K-Value,Node<K,V>是HashMap自定義的內部類。函數
HashMap的最大容量和Node數據的最大容量相等。HashMap已存儲的K-Value數量大於等於最大容量×加載因子時,HashMap的最大容量將擴大1倍。this
HashMap的Node數組中每一個索引位置下均可以掛多個Node節點,當某個索引位置上Node節點數量大於等於8時,就會把該索引位置下全部節點的掛載方式轉換爲紅黑樹的方式。即:當Node數組某個位置上Node的數量小於8時HashMap採用數組+鏈表的方式存儲;當Node數組某個位置上Node的數量大於等於8時HashMap採用數組+紅黑樹的方式存儲。spa
一、默認HashMap構造函數指針
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // 初始化對象的加載因子爲0.75
}對象
二、調用put(key,value)索引
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}ci
三、final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict)詳解源碼
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
/*table:存放HashMap中的key-value鍵值對,第1次set值時對它進行初始化,必要時會進行resize,它的長度永遠是2的整數次冪*/
if ((tab = table) == null || (n = tab.length) == 0) //第1次調用時table爲null,因此會執行resize()方法,resize方法在下面解釋
n = (tab = resize()).length;
//下面(n - 1) & hash的做用是根據key的hash值和table的長度-1進行與運算,找到一個從0到table的長度-1的索引值
if ((p = tab[i = (n - 1) & hash]) == null)
//若是根據索引找到的對象爲null則新建一個Node存到Node數組的該索引位置,注意新節點的next指針爲null
tab[i] = newNode(hash, key, value, null);
else {
//若是根據索引找到的對象不是null,說明在Node數組的該索引位置已經有對象p了
Node<K,V> e; K k;
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
//若是節點p中的hash值和將要set的key的hash值相同,而且p中的key值和將要set的key值相同時:說明將要set的key值已經存在,此時將此key對應的新值覆蓋其對應的舊值,並返回舊值
e = p;
else if (p instanceof TreeNode)
//若是節點p是一個TreeNode,說明:p是一個用雙向鏈表表示的紅黑樹結構
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//若是節點p中的key值和將要set的key值不相同,而且p也不是一個鏈表結構,說明:p只是一個單獨的Node節點。那麼就找到table在這個索引上的最後一個Node,並將新set的key-value這個Node掛在table在這個索引上的最後那個節點上
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1)
//若是table上某個索引的Node鏈表長度達到8時,則須要將Node鏈表轉爲用TreeNode表示的紅黑樹結構
treeifyBin(tab, hash);
break;
}
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold) //當HashMap中的元素數量大於threadhold時,就須要對table進行從新擴容,擴容後的容量是擴容前容量的2倍
resize();
afterNodeInsertion(evict);
return null;
}
四、final Node<K,V>[] resize()詳解
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; //第1次調用時table爲null
int oldCap = (oldTab == null) ? 0 : oldTab.length; //oldCap爲舊table的長度,第1次調用時爲0
int oldThr = threshold; //threadhold:其值爲0.75*當前容量,當HashMap的元素數量超過threadhold時,須要對hashmap進行擴容,它是擴容臨界點
int newCap, newThr = 0;
if (oldCap > 0) { //第1次調用時oldCap爲0
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { //第1次調用時執行該處,默認容量爲16,默認下一次擴展後容量爲16*0.75=12
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr; //第1次調用時threadhold值爲12
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //第1次調用時table的容量爲16
table = newTab;
if (oldTab != null) { //第1次調用時不執行此處
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
//若是節點是一個TreeNode表示的紅黑樹,則將節點的hash值與oldCap進行與操做,將紅黑樹分紅兩個鏈表分別掛載到新table的j的索引位置和j+oldCap的索引位置上,在拆分過程當中若是兩個鏈表的長度達到8則將其轉換爲紅黑樹結構
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
//若是節點是一個Node鏈表結構,則將節點的hash值與oldCap進行與操做,將鏈表分紅兩個鏈表分別掛載到新table的j的索引位置和j+oldCap的索引位置上。注意這兩處註釋中提到的hash都是和oldCap進行與操做,而不是hash和oldCap-1進行與操做。這二者的區別:oldCap是2的n次冪,而oldCap是2的n次冪-1,與2的n次冪進行與是爲了將某舊鏈表上掛載的全部節點分紅兩部分分別存到新鏈表的兩個不一樣索引位置上,而與oldCap-1進行與操做是爲了在新鏈表上爲新插入的元素找到一個合適的索引位置。
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
五、final void treeifyBin(Node<K,V>[] tab, int hash)詳解
//將table該索引位置的Node鏈表替換爲用TreeNode組成的雙線鏈表,並將雙向鏈表轉爲紅黑樹
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
//下面的循環把table在該索引位置的Node鏈表循環轉換爲TreeNode雙向鏈表
do {
TreeNode<K,V> p = replacementTreeNode(e, null); //把Node轉換爲TreeNode鏈表
if (tl == null) //把table在該索引位置的第1個Node轉換爲TreeNode後,再將其這設爲head節點
hd = p;
else { //把table在該索引位置的其餘(非第1個)Node轉換爲TreeNode後,順次掛在第1個節點後面,這是個雙向鏈表
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab); //將TreeNode雙向鏈表轉爲紅黑樹
}
}
六、final void treeify(Node<K,V>[] tab)詳解
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}