【NLP】【八】基於keras與imdb影評數據集作情感分類

【一】本文內容綜述html

1. keras使用流程分析(模型搭建、模型保存、模型加載、模型使用、訓練過程可視化、模型可視化等)python

2. 利用keras作文本數據預處理git

【二】環境準備github

1. 數據集下載:http://ai.stanford.edu/~amaas/data/sentiment/windows

2.安裝Graphviz ,keras進行模型可視化時,會用到該組件: https://graphviz.gitlab.io/_pages/Download/Download_windows.html瀏覽器

【三】數據預處理網絡

將imdb壓縮包解壓後,進行數據預處理。app

1. 將每條影評中的部分詞去掉dom

2. 將影評與label對應起來ide

3. 將影評映射爲int id,同時將每條影評的長度固定,好做爲定長輸入數據

# -*- coding:utf-8 -*-
import  keras
import os
import numpy as np
import re
from keras.preprocessing import text
from keras.preprocessing import sequence
from keras.utils import plot_model
import matplotlib.pyplot as plt

Reg = re.compile(r'[A-Za-z]*')
stop_words = ['is','the','a']

max_features = 5000
word_embedding_size = 50
maxlen = 400
filters = 250
kernel_size = 3
hidden_dims = 250


def prepross(file):
    with open(file,encoding='utf-8') as f:
        data = f.readlines()
        data = Reg.findall(data[0])
        # 將句子中的每一個單詞轉化爲小寫
        data = [x.lower() for x in data]
        # 將句子中的部分詞從停用詞表中剔除
        data = [x for x in data if x!='' and x not in stop_words]
        # 返回值必須是個句子,不能是單詞列表
        return ' '.join(data)

def imdb_load(type):
    root_path = "E:/nlp_data/aclImdb_v1/aclImdb/"
    # 遍歷全部文件
    file_lists = []
    pos_path = root_path + type + "/pos/"
    for f in os.listdir(pos_path):
        file_lists.append(pos_path + f)
    neg_path = root_path + type + "/neg/"
    for f in os.listdir(neg_path):
        file_lists.append(neg_path + f)
    # file_lists中前12500個爲pos,後面爲neg,labels與其保持一致
    labels = [1 for i in range(12500)]
    labels.extend([0 for i in range(12500)])
    # 將文件隨機打亂,注意file與label打亂後依舊要經過下標一一對應。
    # 不然會致使 file與label不一致
    index = np.arange(len(labels))
    np.random.shuffle(index)
    # 轉化爲numpy格式
    labels = np.array(labels)
    file_lists = np.array(file_lists)
    labels[index]
    file_lists[index]
    # 逐個處理文件
    sentenses = []
    for file in file_lists:
        #print(file)
        sentenses.append(prepross(file))
    return sentenses,labels

def imdb_load_data():
    x_train,y_train = imdb_load("train")
    x_test,y_test = imdb_load("test")
    # 創建單詞和數字映射的詞典
    token = text.Tokenizer(num_words=max_features)
    token.fit_on_texts(x_train)
    # 將影評映射到數字
    x_train = token.texts_to_sequences(x_train)
    x_test = token.texts_to_sequences(x_test)
    # 讓全部影評保持固定長度的詞數目
    x_train = sequence.pad_sequences(x_train,maxlen=maxlen)
    x_test = sequence.pad_sequences(x_test,maxlen=maxlen)
    return (x_train,y_train),(x_test,y_test)

【四】模型搭建與訓練

def train():
    (x_train, y_train), (x_test, y_test) = imdb_load_data()
    model = keras.Sequential()
    # 構造詞嵌入層
    model.add(keras.layers.Embedding(input_dim=max_features,output_dim=word_embedding_size,name="embedding"))
    # 經過layer名字獲取layer的信息
    print(model.get_layer(name="embedding").input_shape)
    # 基於詞向量的堆疊方式作卷積
    model.add(keras.layers.Conv1D(filters=filters,kernel_size=kernel_size,strides=1
                                  ,activation=keras.activations.relu,name="conv1d"))
    # 對每個卷積出的特徵向量作最大池化
    model.add(keras.layers.GlobalAvgPool1D(name="maxpool1d"))
    # fc,輸入是250維,輸出是hidden_dims
    model.add(keras.layers.Dense(units=hidden_dims,name="dense1"))
    # 添加激活層
    model.add(keras.layers.Activation(activation=keras.activations.relu,name="relu1"))
    # fc,二分類問題,輸出維度爲1
    model.add(keras.layers.Dense(units=1,name="dense2"))
    # 二分類問題,使用sigmod函數作分類器
    model.add(keras.layers.Activation(activation=keras.activations.sigmoid,name="sigmoe"))
    # 打印模型各層layer信息
    model.summary()
    # 模型編譯,配置loss,optimization
    model.compile(optimizer=keras.optimizers.Adam(),
                  loss=keras.losses.binary_crossentropy,
                  metrics=['accuracy'])
    # 模型訓練
    '''
    # 若是想保存每個batch的loss等數據,須要傳遞一個callback
    history = LossHistory()
    train_history = model.fit(x=x_train,
                              y=y_train,
                              batch_size=128,
                              epochs=1,
                              validation_data=(x_test,y_test),
                              callbacks=[history])
    show_train_history2(history)
    # 結果可視化
    
    '''
    # fit 返回的log中,有 epochs 組數據,即只保存每一個epoch的最後一次的loss等值
    train_history = model.fit(x=x_train,
                              y=y_train,
                              batch_size=128,
                              epochs=1,
                              validation_data=(x_test,y_test))
    show_train_history(train_history)

    # 模型保存
    model.save(filepath="./models/demo_imdb_rnn.h5")
    # 模型保存一份圖片
    plot_model(model=model,to_file="./models/demo_imdb_rnn.png",
               show_layer_names=True,show_shapes=True)

【五】模型訓練過程當中loss的曲線繪製

class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = []
    def on_batch_end(self, batch, logs={}):
        self.losses.append(logs.get('loss'))


def show_train_history2(history):
    plt.plot(history.losses)
    plt.title("model losses")
    plt.xlabel('batch')
    plt.ylabel('losses')
    plt.legend()
    # 先保存圖片,後顯示,否則保存的圖片是空白
    plt.savefig("./models/demo_imdb_rnn_train.png")
    plt.show()
def show_train_history(train_history):
    print(train_history.history.keys())
    print(train_history.epoch)
    plt.plot(train_history.history['acc'])
    plt.plot(train_history.history['val_acc'])
    plt.title("model accuracy")
    plt.xlabel("epoch")
    plt.ylabel("accuracy")
    plt.legend()
    plt.show()

    plt.plot(train_history.history['loss'])
    plt.plot(train_history.history['val_loss'])
    plt.title("model loss")
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.legend()
    plt.show()

【六】基於訓練好的模型作預測

def gen_predict_data(path):
    sent = prepross(path)
    x_train,t_train = imdb_load("train")
    token = text.Tokenizer(num_words=max_features)
    token.fit_on_texts(x_train)
    x = token.texts_to_sequences([sent])
    x = sequence.pad_sequences(x,maxlen=maxlen)
    return x

RESULT = {1:'pos',0:'neg'}

def predict(path):
    x = gen_predict_data(path)
    model = keras.models.load_model("./models/demo_imdb_rnn.h5")
    y = model.predict(x)
    print(y)
    y= model.predict_classes(x)
    print(y)
    print(RESULT[y[0][0]])

predict(r"E:\nlp_data\aclImdb_v1\aclImdb\test\neg\0_2.txt")
predict(r"E:\nlp_data\aclImdb_v1\aclImdb\test\pos\0_10.txt")

預測結果以下:

[[0.16223338]]
[[0]]
neg
[[0.8812848]]
[[1]]
pos

【七】總體代碼以下

# -*- coding:utf-8 -*-
import  keras
import os
import numpy as np
import re
from keras.preprocessing import text
from keras.preprocessing import sequence
from keras.utils import plot_model
import matplotlib.pyplot as plt

Reg = re.compile(r'[A-Za-z]*')
stop_words = ['is','the','a']

max_features = 5000
word_embedding_size = 50
maxlen = 400
filters = 250
kernel_size = 3
hidden_dims = 250

class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = []
    def on_batch_end(self, batch, logs={}):
        self.losses.append(logs.get('loss'))

def prepross(file):
    with open(file,encoding='utf-8') as f:
        data = f.readlines()
        data = Reg.findall(data[0])
        # 將句子中的每一個單詞轉化爲小寫
        data = [x.lower() for x in data]
        # 將句子中的部分詞從停用詞表中剔除
        data = [x for x in data if x!='' and x not in stop_words]
        # 返回值必須是個句子,不能是單詞列表
        return ' '.join(data)

def imdb_load(type):
    root_path = "E:/nlp_data/aclImdb_v1/aclImdb/"
    # 遍歷全部文件
    file_lists = []
    pos_path = root_path + type + "/pos/"
    for f in os.listdir(pos_path):
        file_lists.append(pos_path + f)
    neg_path = root_path + type + "/neg/"
    for f in os.listdir(neg_path):
        file_lists.append(neg_path + f)
    # file_lists中前12500個爲pos,後面爲neg,labels與其保持一致
    labels = [1 for i in range(12500)]
    labels.extend([0 for i in range(12500)])
    # 將文件隨機打亂,注意file與label打亂後依舊要經過下標一一對應。
    # 不然會致使 file與label不一致
    index = np.arange(len(labels))
    np.random.shuffle(index)
    # 轉化爲numpy格式
    labels = np.array(labels)
    file_lists = np.array(file_lists)
    labels[index]
    file_lists[index]
    # 逐個處理文件
    sentenses = []
    for file in file_lists:
        #print(file)
        sentenses.append(prepross(file))
    return sentenses,labels

def imdb_load_data():
    x_train,y_train = imdb_load("train")
    x_test,y_test = imdb_load("test")
    # 創建單詞和數字映射的詞典
    token = text.Tokenizer(num_words=max_features)
    token.fit_on_texts(x_train)
    # 將影評映射到數字
    x_train = token.texts_to_sequences(x_train)
    x_test = token.texts_to_sequences(x_test)
    # 讓全部影評保持固定長度的詞數目
    x_train = sequence.pad_sequences(x_train,maxlen=maxlen)
    x_test = sequence.pad_sequences(x_test,maxlen=maxlen)
    return (x_train,y_train),(x_test,y_test)

def train():
    (x_train, y_train), (x_test, y_test) = imdb_load_data()
    model = keras.Sequential()
    # 構造詞嵌入層
    model.add(keras.layers.Embedding(input_dim=max_features,output_dim=word_embedding_size,name="embedding"))
    # 經過layer名字獲取layer的信息
    print(model.get_layer(name="embedding").input_shape)
    # 基於詞向量的堆疊方式作卷積
    model.add(keras.layers.Conv1D(filters=filters,kernel_size=kernel_size,strides=1
                                  ,activation=keras.activations.relu,name="conv1d"))
    # 對每個卷積出的特徵向量作最大池化
    model.add(keras.layers.GlobalAvgPool1D(name="maxpool1d"))
    # fc,輸入是250維,輸出是hidden_dims
    model.add(keras.layers.Dense(units=hidden_dims,name="dense1"))
    # 添加激活層
    model.add(keras.layers.Activation(activation=keras.activations.relu,name="relu1"))
    # fc,二分類問題,輸出維度爲1
    model.add(keras.layers.Dense(units=1,name="dense2"))
    # 二分類問題,使用sigmod函數作分類器
    model.add(keras.layers.Activation(activation=keras.activations.sigmoid,name="sigmoe"))
    # 打印模型各層layer信息
    model.summary()
    # 模型編譯,配置loss,optimization
    model.compile(optimizer=keras.optimizers.Adam(),
                  loss=keras.losses.binary_crossentropy,
                  metrics=['accuracy'])
    # 模型訓練
    '''
    # 若是想保存每個batch的loss等數據,須要傳遞一個callback
    history = LossHistory()
    train_history = model.fit(x=x_train,
                              y=y_train,
                              batch_size=128,
                              epochs=1,
                              validation_data=(x_test,y_test),
                              callbacks=[history])
    show_train_history2(history)
    # 結果可視化
    
    '''
    # fit 返回的log中,有 epochs 組數據,即只保存每一個epoch的最後一次的loss等值
    train_history = model.fit(x=x_train,
                              y=y_train,
                              batch_size=128,
                              epochs=10,
                              validation_data=(x_test,y_test))
    show_train_history(train_history)

    # 模型保存
    model.save(filepath="./models/demo_imdb_rnn.h5")
    # 模型保存一份圖片
    plot_model(model=model,to_file="./models/demo_imdb_rnn.png",
               show_layer_names=True,show_shapes=True)

def show_train_history2(history):
    plt.plot(history.losses)
    plt.title("model losses")
    plt.xlabel('batch')
    plt.ylabel('losses')
    plt.legend()
    # 先保存圖片,後顯示,否則保存的圖片是空白
    plt.savefig("./models/demo_imdb_rnn_train.png")
    plt.show()
def show_train_history(train_history):
    print(train_history.history.keys())
    print(train_history.epoch)
    plt.plot(train_history.history['acc'])
    plt.plot(train_history.history['val_acc'])
    plt.title("model accuracy")
    plt.xlabel("epoch")
    plt.ylabel("accuracy")
    plt.legend()
    plt.show()

    plt.plot(train_history.history['loss'])
    plt.plot(train_history.history['val_loss'])
    plt.title("model loss")
    plt.xlabel("epoch")
    plt.ylabel("loss")
    plt.legend()
    plt.show()

def gen_predict_data(path):
    sent = prepross(path)
    x_train,t_train = imdb_load("train")
    token = text.Tokenizer(num_words=max_features)
    token.fit_on_texts(x_train)
    x = token.texts_to_sequences([sent])
    x = sequence.pad_sequences(x,maxlen=maxlen)
    return x

RESULT = {1:'pos',0:'neg'}

def predict(path):
    x = gen_predict_data(path)
    model = keras.models.load_model("./models/demo_imdb_rnn.h5")
    y = model.predict(x)
    print(y)
    y= model.predict_classes(x)
    print(y)
    print(RESULT[y[0][0]])

#train()
predict(r"E:\nlp_data\aclImdb_v1\aclImdb\test\neg\0_2.txt")
predict(r"E:\nlp_data\aclImdb_v1\aclImdb\test\pos\0_10.txt")

【八】結果對比與分析

本文主要參考keras example示例(https://github.com/keras-team/keras/blob/master/examples/imdb_cnn.py),該示例的imdb數據已經預處理好了。因此嘗試從新對數據進行預處理,和keras示例相比,精度基本一致。

keras模型png圖片以下:

也可使用工具Netron(https://github.com/lutzroeder/Netron)打開keras保存的.h5格式的模型

Netron是個可視化模型的神器,能夠可視化caffe/tensorflow/keras等模型

【九】可視化

上面提到了三種可視化,一是利用callback回調,記錄單個epoch下逐個batch的loss等數據,而後繪製曲線圖,或者利用history繪製多個epoch下的loss等變化曲線圖,二是將模型保存爲圖片,三是利用Netron查看.h5模型。如今介紹第四種可視化方式,即 利用tensorboard來顯示訓練過程與模型參數

使用方式比較簡單,給fit函數傳遞一個keras.callbacks.TensorBoard 做爲callback對象便可。

tensorboard = keras.callbacks.TensorBoard(log_dir="./logs/")
    train_history = model.fit(x=x_train,
                              y=y_train,
                              batch_size=128,
                              epochs=1,
                              validation_data=(x_test,y_test),
                              callbacks=[tensorboard])

啓動tensorboard(tensorboard --logdir=./logs/)以後,而後在瀏覽器輸入:http://localhost:6006 ,便可看到各類信息

【十】關於其中的Embedding層

前面介紹過,可使用word2vec或者fasttext或者gensim訓練出詞向量,而這裏的Embedding好像也沒有使用訓練好的詞向量啊?緣由是這裏的embedding也是參與訓練的,他是整個流程的一部分。因此,embedding的參數解釋以下:

# 構造詞嵌入層
    # input_dim ----> 詞典的最大詞數目,即V
    # output_dim ---->詞向量的維度大小,即m
    # input_length---->數據數據x的大小,即句子長度。也就是一個句子有多少個詞。因爲句子長度不一,這也是前面爲何須要
    #                  將句子截斷或者填充
    model.add(keras.layers.Embedding(input_dim=max_features,output_dim=word_embedding_size,name="embedding"))

那若是須要使用fasttext訓練好的詞向量,怎麼辦呢?其實這個好辦,也就是一個fine-tuning的過程,不過針對上述網絡而言,僅僅對embedding層進行fine-tuning。

分爲以下三個步驟:

1. 獲取預訓練的詞向量,將其解析出來,能夠解析到一個map或者dict中,其中key=token,value=word vector。 V*M

2. 將訓練的語料(如imdb)預處理後,經過查表方式,從上述map中獲得對應詞的向量,而後獲得當前語料庫的詞向量(V1*M)。注意,這裏詞向量的size依舊爲M,只是詞典的大小換成了V1。若是當前語料庫中的某個詞再也不預訓練的詞典中,則能夠將該詞的詞向量隨機初始化。

3. 將當前語料庫的word embedding,填充到Embeeding layer的參數中。

代碼以下:

這裏以斯坦福大學經過glove訓練好的word embedding爲例

下載網址:https://nlp.stanford.edu/projects/glove/

# 初始化詞典
embedding_matrix = np.zeros(shape=(V,m))
word_index = {}
embedding_index = {}
# 選擇m=50的預訓練數據,將預訓練的詞與vector提取到embedding_index中存儲起來
with open("glove.6B.50d.txt") as f:
    for line in f:
        values = line.split()
        word = values[0]
        coefs = np.asarray(values[1:],dtype=np.float32)
        embedding_index[word] = coefs
'''
x_train,t_train = imdb_load("train")
token = text.Tokenizer(num_words=max_features)
token.fit_on_texts(x_train)
'''
# 獲取當前語料(imdb)的詞
word_index = token.word_index
not_find = 0
for word,i in word_index.items():
    if i < V:
        # 查預訓練的詞表
        embedding_vec = embedding_index.get(word)
        if embedding_vec is not None:
            embedding_matrix[i] = embedding_vec
        else:
            not_find += 1
# 將權值設置到embedding layer中
model.layers[0].set_weigth([embedding_matrix])
# frozen embedding layer,也能夠不凍結。不凍結的話就能夠fine-tuning該層
model.layers[0].trainable = False
相關文章
相關標籤/搜索