問題:node
Given a binary tree, determine if it is height-balanced.算法
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.this
解決:spa
【注】平衡二叉樹(Self-balancing binary search tree)又被稱爲AVL樹(有別於AVL算法),且具備如下性質:它是一 棵空樹或它的左右兩個子樹的高度差的絕對值不超過1,而且左右兩個子樹都是一棵平衡二叉樹。本題要求判斷一棵樹是否爲平衡二叉樹。遞歸
① 採用遞歸的方式判斷左右子樹高度之差是否爲1便可,注意左右子樹也須要判斷是否平衡。ci
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution { // 3 ms
public boolean isBalanced(TreeNode root) {
if(root == null) return true;
int ldepth = getDepth(root.left);
int rdepth = getDepth(root.right);
if(Math.abs(ldepth - rdepth) <= 1 && isBalanced(root.left) && isBalanced(root.right)) return true;
return false;
}
public int getDepth(TreeNode node){
if(node == null) return 0;
return Math.max(getDepth(node.left),getDepth(node.right)) + 1;
}
}get
② 在discuss中看到這個,在計算深度時順便判斷左右子樹是否平衡,能夠提升效率。it
public class Solution { //1ms
public boolean isBalanced(TreeNode root) {
return helper(root) >= 0;
}
private int helper(TreeNode root) { //helper方法的做用是計算樹的高度同時判斷是否平衡,若是不平衡返回-1,平衡返回0,另外最後返回的是樹的高度
if (root == null) {
return 0;
}
int ldepth = helper(root.left);
if (ldepth == -1) {
return -1;
}
int rdepth = helper(root.right);
if (rdepth == -1) {
return -1;
}
if (Math.abs(ldepth - rdepth) > 1) {
return -1;
}
return Math.max(ldepth, rdepth) + 1;
}
}io