判斷是否爲平衡二叉樹 Balanced Binary Tree

問題:node

Given a binary tree, determine if it is height-balanced.算法

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.this

解決:spa

【注】平衡二叉樹(Self-balancing binary search tree)又被稱爲AVL樹(有別於AVL算法),且具備如下性質:它是一 棵空樹或它的左右兩個子樹的高度差的絕對值不超過1,而且左右兩個子樹都是一棵平衡二叉樹。本題要求判斷一棵樹是否爲平衡二叉樹遞歸

① 採用遞歸的方式判斷左右子樹高度之差是否爲1便可,注意左右子樹也須要判斷是否平衡。ci

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution { // 3 ms
    public boolean isBalanced(TreeNode root) {
        if(root == null) return true;
        int ldepth = getDepth(root.left);
        int rdepth = getDepth(root.right);
        if(Math.abs(ldepth - rdepth) <= 1 && isBalanced(root.left) && isBalanced(root.right)) return true;
        return false;
    }
    public int getDepth(TreeNode node){
        if(node == null) return 0;
        return Math.max(getDepth(node.left),getDepth(node.right)) + 1;
    }
}get

② 在discuss中看到這個,在計算深度時順便判斷左右子樹是否平衡,能夠提升效率。it

public class Solution { //1ms
    public boolean isBalanced(TreeNode root) {
        return helper(root) >= 0;
    }
    private int helper(TreeNode root) { //helper方法的做用是計算樹的高度同時判斷是否平衡,若是不平衡返回-1,平衡返回0,另外最後返回的是樹的高度
        if (root == null) {
          return 0;
        }
        int ldepth = helper(root.left);
        if (ldepth == -1) {
          return -1;
        }
        int rdepth = helper(root.right);
        if (rdepth == -1) {
          return -1;
        }
        if (Math.abs(ldepth - rdepth) > 1) {
          return -1;
        }
        return Math.max(ldepth, rdepth) + 1;
    }
}io

相關文章
相關標籤/搜索